NET .
rogramming

a practical guide using C#

pradeep topadiya

Entepiisechas MET progromming in C#—fom o deveiopers pelspective
insmals of the NET Fromewerl —lsom io gat o moal kom i services
8
Billd prokssionsl applcaiions using CR—quickly and afficimly

.
Hondyon approoch covering the Bose Class Ubwry, remoting, ASP JNET Wb services,
corzunendy, cunily, enterprlse services, deding with legacy code, ond much s

by Pradeep Tapadiya

Publisher: Prentice Hall PTR
Pub Date: July 11, 2002

ISBN: 0-13-066945-8

Book Info

Takes a straightforward, hands-on gpproach to explain everything you need to know from
development to deployment and maintenance for this platform-all from a developer's
perspective. Softcover. CD-ROM included.

From the Back Cover

Enterprise-class .NET programming in C#—from a developer's perspective.

* Internals of the .NET Framework—Ilearn to get the most from its services

* Build professional applications using C#—quickly and efficiently

* Hands-on approach covering the Base Class Library, Remoting, ASP .NET Web Services,
concurrency, security, enterprise services, dealing with legacy code, and much more

NET developers need more than buzzwords to get the job done. To tackle enterprise-class
projects, they need both areal understanding of the .NET architecture and aworking
knowledge of how to put its servicesto work. In .NET Programming: A Practical Guide
Using C#, .NET authority Pradeep Tapadiya takes a straightforward, hands-on approach to
explain everything you need to know from devel opment to deployment and maintenance for
this platform—all from a developer's perspective. Using C# as the primary language, and
with plenty of code examples throughout, this book is an excellent way to learn:

* The .NET infrastructure—packaging and deployment, the common language runtime and
its services, and the .NET Framework class libraries

* Distributed computing—devel op object-remoting applications for intranets and Web
servicesfor the Internet

* How to develop thread-safe code using the .NET synchronization infrastructure and learn
asynchronous programming

* Interoperability with native DLLs and COM applications

* How to develop secure applications using role-based security and enforce security for
third-party applications using code access permissions

* Enterprise services—devel op scalable applications, support transactions, and more.
Appropriate for experienced developers, .NET Programming will help you get the most from
the .NET architecture—today.

About the Author
PRADEEP TAPADIYA isalead software architect at the OpenView R&D Division of
Hewlett-Packard in Roseville, CA, and has been working with Microsoft enterprise

development technologies since 1996. He holds a doctoral degree in computer science from
Texas A&M University. Tapadiyais aso the author of COM+ Programming: A Practical
Guide Using Visua C++ and ATL (Prentice Hall PTR).

Introduction

Computing lifestyles and devel opment needs change with time. Over the years, a number of paradigms and
programming methodol ogies have been offered to support the needs of the devel opers and software vendors.

In the mid 1990s we saw monoalithic applications being broken into smaller applications that communicated with each
other. To facilitate code reusability and application communication across compiler boundaries and programming
language boundaries, Microsoft introduced a framework called Component Object Modd (COM). To further facilitate
the communication across machine boundaries, Microsoft extended the model to Distributed COM (DCOM).

The late 1990s witnessed an incredible explosion of the Internet thet caused a revolution in the way informetion was
made available to the users. In devel oping enterprise systems, the traditiona client/server model was replaced by a
three-tier programming model, enhanced for Internet gpplications. Developing such enterprise systems was atime-
and resource-consuming afair, as the systems had to meet extra enterprise-level requirements such as scaability,
robustness, security, transaction support, and so on. To help developers meet these challenges, Microsoft introduced
COM+, an advanced runtime environment thet ran on Microsoft Windows 2000. Developers could now leverage the
services provided by COM+ instead of building the services themselves.

In the new millennium, the Internet is evolving from a collection of isolated Web sites and gpplicationsinto a generd
"communication bus' for ditributed applications that can run on various hardware and operation system (OS)
platforms.

Microsoft's .NET platform is based around this vision.

As part of the NET initiative, Microsoft has provided a framework and some tools that developers can use to build
goplications targeting .NET platform.

Although .NET achieves many of the same goals that COM does, make no mistake—.NET is a radically new platform.
The programming mode has been an evolution over COM, but the framework implementation is completely different.
However, the enterprise system needs (e.g., scaability, transaction support, etc.) haven't changed much. Therefore,

many COM+ services have found their way into .NET.

This book focuses on understanding .NET architecture from a devel oper's perspective and building .NET gpplications
primarily using C#, a new programming language thet offers the flexibility of C++ and the amplicity of Visud Basic.

About This Book
The purpose of writing this book is twofold:

1. Tohep you understand .NET architecture in detail.
2. Toexplorethe services provided by the NET Framework in building enterprise-level applications.

To achieve thefirgt god, a hands-on approach is employed in this book. Aswe progress through unfolding .NET
technology, | present akey concept, accompanied by code samples as necessary.

The second god isto use .NET productively in building enterprise-level applications. Enterprise-level requirements
include security, transaction support, scaability, dealing with concurrency, distributed three-tier computing, dedling
with legacy code, and s0 on. This book seeks to do the following:

Provide an in-depth andysis of dl agpects of .NET technologies related to enterprise-leve application
development.

Provide ideas to develop robust .NET applications.

Provide programming code to achieve common .NET programming tasks.

Provide concise, complete sample programs to illustrate the concepts presented.

| have tried to present the materia such that it makes interesting reading for developers. Not only can developers gain
an in-depth knowledge of .NET platform, but they can aso get familiar with programming in other related
technologies such as SOAP, XML, ADO.NET, and ASP.NET.

The book starts with an overview of .NET plaform from a nontechnical perspective. Then | progress through
unfolding the .NET architecture and services. Wherever gpplicable, code samples are provided to illustrate and
explain the concepts. This book provides enough sample code to enable readers to be more productive and to carry out

further research.

Throughout the book, | have identified important points and tips for effective NET programming. The pad-and- pencil

icon marks important notes:

An Important Note

The light bulb icon flags tips

A Tip

Intended Audience
The intended audience includes the following groups:

Software developers and engineers who are involved in developing software products for the Windows
platform and typicaly use C++ or Visud Basic astheir programming language.

Managers who actively supervise a software product.

Computer science students. Today, more and more companies expect job candidates to understand COM and
COM+ technologies. Senior students and graduate students are becoming more aware of COM technology as
a software engineering discipline. The next logica step for them would be to gart programming in .NET.

Choice of Programming Language

A vagt mgjority of the NET programming community will be using C# for developing .NET applications. As a matter
of fact, alarge part of the NET Framework has been developed in C#. Hence, | chose C# to present samplesin most
cases. However, in someingtances | have used Visud Basic.NET or another language thet is gppropriate for the given
Situation.

Prerequisites
The most important prerequisite for this book isawillingnessto learn.

The book iswritten for intermediate to advanced devel opers. It is assumed that readers have a working knowledge of
the following:

C++ or Java programming languages.
Windows 2000 operating system.

Note that knowledge of C# is helpful but not mandatory, aslong as you are familiar with C++ or Java. Aswe go
through developing sample code, | am confident reeders will automatically pick up adequate information about the

language.

Sample Code

All the examples provided in the book are concise and complete. For brevity, | sometimes show only the rlevant code
sample in the book. However, complete source code is available on the companion Web site. All the examples and
tools have been compiled with Microsoft Visual C# 1.0 and the .NET Framework Software Development Kit (SDK),
and have been tested on Windows 2000 SP2 and Windows XP.

The samples are organized by chapters. Each sampleis built as a separate project. A project can be compiled either
from Visud Studio .NET or from the command-line makefile. The makefile can befound inthe bi n directory under
each project, except for Chapter 2. In order to illustrate some key compiler concepts, Chapter 2 contains the makefile
in the same directory as the project.

Notethat Visua Studio .NET requiresthat a project belongsto a solution. The project file has an
extenson. cspr 0] and the solution file hasan extension . sl n.

In order to build the projects from the command line, you need to set up proper paths in the environment. If you have
ingdled Visud Studio .NET, then you can use the command-line link that is provides cdled the "Visud Studio NET
Command Prompt." Thislink initiaizes the environment for the command window such thet the NET Framework
SDK tools can be accessed from the command line.

References

This book frequently refers to other books, Microsoft's Knowledge Base articles, articles from various journals, and
Microsoft's Developers Network (MSDN) Library. All the references for a particular chapter are listed at the end of
that chapter. Each reference entry isindexed by akeyword that uses a combination of author's last name and year the
reference was published. For example, Don Box's book Essential COM, which was published in 1998, isindexed as
[Box-98]. In the book, each time | cite areference, | use the relevant keyword.

Chapter Organization

The book is divided into two parts. Thefirst part, Chapters 1—5, focuses on the fundamentas of .NET Programming
Model and shows how to develop .NET-based applications.

The second part, Chapters 6—10, focuses on the services provided by .NET. Each chapter focuses on a specific aspect
of .NET. These chapters are largely independent of each other.

Chapter 1: What is .NET?

NET is Microsoft's new initiative for building applications regardiess of the platforms or languagesin use. The NET
labe gppliesto three digtinct but related items: avison for how information technology (IT) will evolve, a software
platform to build .NET applications, and an gpplicationhosting business designed to support the vison and market the
platform. In this chapter, we ingpect each of these items from afairly nontechnical perspective. By the end of the
chapter, the readers will have agood idea of where Microsoft is going with the .NET initiative and will understand the
terminology, features, and services offered by the NET Framework, the software platform for .NET applications.

Chapter 2: From C++to C#

This chapter focuses on various stages of building .NET applications—from development to debugging and deploying.
Y ou will write smple C# programs to explore common programming paradigms under the NET Framework. In the

process, you will learn the differences and similarities between C++ and C#. By the end of the chapter, readers will
understand many key concepts of the NET Framework and will be fairly comfortable developing smple NET

gpplications using C#.

Chapter 3: Assemblies

Under .NET, assemblies form the fundamental building block of program components. In defining the format for the
assembly, .NET had many gods. These godsincluded interoperability among different programming languages,
side-by-sde execution of multiple versions of the same assembly, performance enhancements, and so on. In this
chapter, we take an in-depth look at the assemblies and examine how these goals were achieved. By the end of the
chapter, you will have agood knowledge of the assembly internas and the packaging and deployment model

under .NET.

Chapter 4: Essentials of the .NET Framework

In this chapter, we examine the facilities that the NET Framework provides to load and execute the code and provide
services to the executing code. We start with an overview of various components that congtitute the .NET Framework.
Then we look at the overall process of managed code execution. We will see how .NET applications can be
adminigratively controlled using externa configuration files and how the configuration mechanism can be extended

to store custom settings. We then look at the type system used by the common language runtime and examine the
memory and performance considerations of using reference types versus value types. We examine how the CLS
provides for cross-language interoperability. We look at how the execution engine validates the metadata, verifiesthe
MSIL code for type-safety, and performs J T compilation on the MSIL code. Findly, we look at the automatic
memory management features of the runtime and how it smplifies or complicates programming under .NET. By the
end of the chapter, you will have agood understanding of .NET architecture and how it helpsin producing robust
goplications that can potentialy be reused by any programming language under .NET. Y ou will dso learn the
drategies of generating efficient code.

Chapter 5: Programming with the Base Class Library

The .NET BCL includes hundreds of classes that provide a number of useful servicesto help devel opers boost their
productivity. In this chapter, we look a how to solve many common programming tasks using these classes. By the
end of the chapter, you will become familiar with many important classes under the NET Framework.

Chapter 6: Distributed Computing

In this chapter, we look at how to develop distributed applications under .NET that can communicate within intranets
aswdl as over the Internet. We will see how .NET remoting offers seamless remote activation and remote method
cdls, among other things. We examine how to develop intranet applications using this support. Over the Internet, Web
services have become the building blocks for distributed Web-based applications. We will look at the support offered
by ASP.NET to create and deploy Web services. By the end of this chapter, readers will be comfortable developing
goplications usng the common language runtime obj ect-remoting and will be fairly conversant with ASP.NET Web
services devel opment.

Chapter 7: Interoperability

The .NET Framework provides support for managed code to interoperate with unmanaged code. The unmanaged code
could either be COM-based or bein native DLLs. The .NET Framework has been designed to provide smooth

interoperability. In this chapter, we examine the support for interoperability provided by the NET Framework. By the
end of the chapter, readers will be comfortable making cals from managed code into unmanaged code and vice versa

Chapter 8: Concurrency

Under Windows, and most other modern OSs, a process can execute multiple threads concurrently, each of which
cary out a pecific task. The NET Framework supports devel oping multithreaded applications in two ways—by
supporting the creation and use of threads and by providing a mechanism to make asynchronous cdls. In this chapter,
we examine both these techniques in detail. We also look a various issues involved with multithread programming
and the support provided by the NET Framework in developing classes that are safe from concurrent access.

Chapter 9: Security

The .NET Framework offers two security mechanisms—code access security and role-based security. Both security
mechanisms are built on top of the security provided by the underlying OS. Code access security keeps track of where
the assemblies come from and what security permissions should be granted to them. Role-based security enables the
code to make security decisions based on the role of the user executing the code.

In this chapter, we look at the concepts underlying code access security and role-based security. We aso examine the
classes and services provided by the NET Framework to facilitate the use of these security mechanisms.

Security is aso an important consideration for ASP.NET applications. ASP.NET applications need to authenticate
clients and provide restricted access to any sensitive data, based on the client credentials. In addition, the ASP.NET
applications may aso have to act on behaf of the client in some cases to access OS secured resources such as NTFS
files. In this chapter, we aso examine various security features that ASP.NET provides to ded with authentication,
authorization, and impersonation.

Chapter 10: Enterprise Services

Enterprise system development has historicaly been avery time- and resource- consuming process. The development
complexity arises from the extra enterprise-level requirements such as scaability, robustness, security, automatic
transaction processing, and so on.

The .NET Framework provides many infrastructura services to meet the needs of enterprise systems. This dlows
businesses to focus on their core competenciesingtead of building the plumbing themsdlves.

In this chapter, we examine in detail some important requirements for enterprise systems and the services provided
by .NET to meet these requirements.

Companion Web Site

The companion Web site (www.phptr.comvtapadiya/dotnet/) contains the source code for al the examples in the book,
arranged by chapters. For the most up-to-date information, see the read-mefile a the Web site.

Author Biography

Pradeep Tapadiyais alead software architect at the OpenView R&D Divison of Hewlett-Packard in Roseville, CA,
and has been working with Microsoft enterprise development technologies since 1996. He holds a doctora degreein
Computer Science from Texas A&M University. Tapadiyais aso the author of COM+ Programming—A Practical
Guide Using Visual C++ and ATL. Tapadiya can be reached at pradeep@tapadiya.net.

Acknowledgments

Firgt of dl, I'd like to thank Kent Sharkey, Microsoft Technical Evangdist for the NET Framework, who provided me
with valuable feedback by criticaly reviewing the technica contents of the book.

There were many people who helped me review my manuscript over the course of writing the book. 1'd epecidly like
to thank Mihir Ddd and Sanjay Mehta (my colleagues a Hewlett- Packard), and Terrance Simkin (Professor,
Computer Engineering Technology, New Hampshire Technica Indtitute) who offered me va uable suggestions on
presenting my thoughts and idess.

A round of gratitude is dso due for the following folks for helping me with technology- specific questions tacey
Giard and Connie Sullivan (Managers, Microsoft .NET Authors Web Community), Paddy Srinivasan (Microsoft),
Ranjeeth Ramakrishnan (Microsoft), Ron Jacobs (Microsoft), Shgjan Dasan (Microsoft), Kit George (Microsoft),
Steven Pratschner (Microsoft), Brad Adams (Microsoft), Jm Hogg (Microsoft), Michagl Day (Microsoft), Paul
Harrington (Microsoft) and Juvd Lowy (Author).

I'd like to thank David Wilkie, my direct manager at Hewlett Packard, and Russ Danidls (Hewlett Packard) for
providing support and encouragement to write the book.

I'd dso like to thank the editorid team at Prentice Hall PTR and Hewltt- Packard Press Jil Harry (Executive Editor),
Anne Garcia (Production Editor), Jm Markham (Developmentd Editor), Pat Pekary (Publisher and Manager, HP
Books), and Scott Suckling (MetroVoice Publishing Services).

Findly, and most important of dl, 1'd like to thank my wife VVrushali and my 3-year old son Jay, both of whom
patiently stood by me despite the fact that | broke my promise of spending more time with them.

PART |

Chapter 1. What Is .NET?

NET is Microsoft's new initiative for building applications regardiess of the platforms or languagesin use. The NET
label gppliesto three digtinct but related items: avison for how informeation technology (IT) will evolve, a software
platform to build .NET gpplications, and an gpplicationhosting business designed to support the vison and market the
platform. In this chapter, we ingpect each of these items from afairly nontechnica perspective. By the end of the
chapter, the readers will have a good idea of where Microsoft is going with the .NET initiative and will understand the
terminology, features, and services offered by the NET Framework, the software platform for .NET applications.

Introduction

In June 2000, Microsoft announced the .NET initiative amgor shift in the technica direction for Microsoft and a
major shift for those engaged in devel oping software based on Microsoft tools and technologies.

The label .NET hes been gpplied to three didtinct entities. They are:

1. A vidon of how software will evolve to take advantage of the Internet and encompass the increasing variety
of computing devices that are joining the PC in customers offices, pockets, and homes.

2. A software platform to help developers build such applications and a so to address some long-time
shortcomings of Windows.

3. Angpplication-hogting business that will ddliver applications as services over the Internet.

In the rest of the chapter, we examine these three ideas in detail.

The Vision

The Web has evolved along way from browsing static Hypertext Markup Language (HTML) pages. Today, users can
download music, participate in auctions, buy items online, and even tak to their family face-to-face over the Internet.
Even businesses are not behind. They have been implementing bus ness-to-business (B2B) and business-to-consumer
(B2C) applications that communicate over the Internet.

Microsoft believes that the Internet will evolve from a collection of isolated Web sites and applications into a generd
"communication bus' for digtributed gpplications. Individua parts of the distributed gpplication could be running on
different hardware and software platforms. The computing devices include your desktop systems as well as mobile
devices such as cdllular phones, Pocket PCs, persond digital assistants (PDAS), and so on. Even household appliances
such as microwaves and dishwashers will participate in this communication over the Internet.

Web Services

To befair, this vison of anytime, anywhere, any-device computing is aso shared by many other software companies,
such as IBM and Hewlett- Packard, and many respected computer scientists around the world. A key technology
endbler for this distributed computing model is Web services. A Web service can be defined as a service that can be
accessed programmatically over the Web. Companies can make their business applications available as Web services.
These Web services, for example, can be used to integrate applications within various divisons of the same company.
The Web services can aso be used to automate communication over the Internet between two companies.

To be able to develop distributed applications that transcend geographical, hardware, and OS boundaries, Web
services need to be based on universaly accepted standards. Table 1.1 lays out the foundation elements of Web

services.

Table 1.1. Web Services Foundation
Standard Purpose
Internet Ubiguitous communication
Extensible Markup Language (XML) Universal data format
Simple Object Access Protocol (SOAP) Communication protocol

Web Services Description Language (WSDL) Describe the semantics of the methods available on a
Web service

Universal Description, Discovery, and Integration|Publish and find Web services
(UDDI)

In the "anywhere computing” vision, clients that wish to access Web services can be geographically distant from the
servers. Asthe Internet has a broad geographical reach, it makes sense to deliver the services over the Internet.

To develop digtributed client/server gpplications that transcend hardware and OS boundaries, Extensible Markup

Language (XML) has been accepted as the universal language for defining data formats. XML provides a common

data format that does not require business partners or customers to use a particular programming language, application,
OS, or hardware.

XML by itsdlf is not enough to achieve the client/server communication. To access a Web service, aclient hasto

make a procedura call to the server, passin the needed parameters, and get back the return value. A protocol hasto be
defined for such an exchange of information. To this effect, the W3C" has defined a protocol called Simple Object
Access Protocol (SOAP). SOAPisalightweight protocol for exchange of informetionin a decentralized, distributed
environment. It specifies how aremote procedure call can be expressed in XML format. It is an XML-based protocol
that congsts of three parts:

™ The World Wide Web Consortium (W3C) is a standards body that develops specifications to promote the

evolution of the Web. More information on W3C can be found at http://www.w3.org/.

An envelope that defines aframework for describing what isin amessage and how to processit.
A set of encoding rules for expressing instances of application-defined data types.
A convention for representing remote procedure calls and responses.

10

Although the SOAP specification isindependent of the underlying transport protocol, Hypertext Transport Protocol
(HTTP) has been the sweet spot for the industry. Most companies let HTTP traffic pass through the firewdl. Contrast
this to other distributed object technol ogies such as Distributed Component Object Model (DCOM) and Common

Object Request Broker Architecture (CORBA) that require opening ports on the firewall, thus compromising security.

Also note that athough the client and the server can communicate with each other using raw SOAP packets, helper
utilities are available on most platforms to hide the grunge work of creating SOAP packets:

The client makes a method call passing in the required parameters.

2. A heper utility on the client Sde packages the method cal and its parameters into a SOAP-compliant XML
format and sends the SOAP packet to the remote server over anetwork protocol, preferably HTTP.

3. A heper utility on the server Sde unpackages the SOAP packet and cals the actud method, passing in the
method parameters. On returning from the method, the utility repackages the return vaue into a SOAP
packet and sends it back to the client.

4. Thedient-sde utility unpackages the SOAP packet and returns the value to the client.

From a programming perspective, using the SOAP helper utilities makes calling a method to a remote system as
smple asmaking aloca method call.

Why is SOAP important? Because it provides the foundationa invocation mechanism for gpplication-to-gpplication
computing, irrespective of the underlying hardware or operating system platforms.

The SOAP specification isawork in progress. The current draft of the specification can be found at W3C's Web site
[W3C-01].

Now we know how to make method calls on a Web service programmatically. However, we still don't know what
methods are available as part of the Web service. We need a mechanism that describes the programmatic "interface”
of the Web sarvice; that is, the methods available on the Web service, the parameters for each method, and the return
vaue of each method. A popular choice isto define this interface in Web Services Description Language (WSDL), an
XML-based language that lets you express the functions and formats supported at any endpoint of the service. This
programmatic interface is referred to as the contract of the Web service.

At this point, we know how to obtain method information on a Web service and how to make the method call. The
remaining problem isto identify the server running the Web service.

Itislikely that in some cases the server is known to the client. However, it is possible thet the client is not particularly
happy with the quaity of the service or the cost of accessing the service, and may wish to use a different server. The
beauty of the Web services programming model isthat it doesn't matter which server provides the service, aslong as
the server adheres to the Web service contract. Coding-wise, dl that is needed isto point to the right server. Thereis
no change required to the rest of the code.

An industry-wide effort is underway to promote e-commerce among businesses. This project, cdled Universa
Description, Discovery, and Integration (UDDI®), is an initiative to create an open framework for describing Web
services, discovering businesses, and integrating business services over the Internet. UDDI enables business
gpplications to do the following:

n

@ Complete information on UDDI can be found at http://www.uddi.org/.

Discover esch other.
Define how they interact over the Internet.
Share information in aglobd regigtry that will more rgpidly accelerate the globa adoption of B2B

€-commerce.

Essentidly, UDDI provides the "ydlow pages' on the Internet for the industry. UDDI has dso embraced SOAP and
WSDL, making it convenient to obtain information from its repository programmatically.

Note that standards such as XML, SOAP, WSDL, UDDI, and so on, are not proprietary to Microsoft, although
Microsoft has been amagjor contributor in driving these standards.

Microsoft's NET initiative is built around XML, SOAP, and WSDL. The .NET technology and tools make it easy for
companies to develop Web services and to consume other Web services.

Heterogeneous Environment

It is possible that Web services and other future gpplications may run on avariety of computing devices, not just PCs
or mainframes. These devices need not run the same operating system. Microsoft Windows is not the only choice for
the OS. Therefore, jointly with Intel and Hewlett-Packard, Microsoft has submitted the core .NET Framework
specifications to European Computer Manufacturer's Association (ECMA™). This ECMA specification is referred to as
the Common Language Infrastructure (CLI). The CLI specifications are not wedded to any OS. The .NET runtimeis
Microsoft's implementation of the CLI for Windows OS. However, Microsoft has also made available the source code
to aworking implementation of ECMA CLI that builds and runson Fr eeBSD, avariation of the UNIX OS.
Currently, there are various other initiatives underway to implement CLI on other variations of UNIX such as Linux.

®'ECMA is an international standards organization. Their purpose is to standardize information and

communication systems. More information on ECMA can be found at http://www.ecma.ch/.

Among other things, the CLI aso specifies that a CLI-compliant gpplication must run on different platforms without
being rewritten for each specific platform. A .NET application, for example, can run on many processors and
platforms (currently, only x86 compatible CPUs are supported) as long as no OS-specific cdls are made. So, if things
go as expected by various implementers of CLI, you will be able to take a .NET executable that is built on one OS and
run it on many other Windows and non-Windows OSs.

Smart Devices

In the not so distant future, Microsoft expects that PCswill be joined by many new kinds of smart devices such as
data- enabled wireless phones, handheld compuiters, tablet PCs, home appliances, and so on. If an gpplication hasto
run on al these devices, the gpplication will have to automatically adapt its user interface to the capabilities of the
deviceit runson. This not only means adapting to each device's display and input capabilities, but dso supporting
new modes of communication such as spoken language and handwritten text.

To support software development for the smart devices, Microsoft has announced to release a subset of the NET
Framework caled the NET Compact Framework.

12

Compelling User Experience

Microsoft believes that, in this new distributed computing world, the experience should be very smple and

compelling for the end users. To provide such experience, Microsoft intends to host a set of foundation services or
building-block services. These building-block services will act as a centrd repository of data for users, dlowing them
to store e-mail, cdendar information, contacts, and other important data, and present this data as needed to other Web
Stes.

The Platform

Figure 1.1 shows an overview of the .NET plaform.

Figure 1.1. The .NET Platform.

| Application]
_MNET SDK. Developers Tools
| Libraries NET NET
Enterprise Foundation | Visual Stodio NET l
Commen Language Sarvers Services E
Runtime | C#, Visudl Basic NET|
Windows O8 |

The central component of the NET platform isthe NET Framework. This consists of a runtime environment caled
the common language runtime and a set of supporting libraries. The runtime environment controls the ingtalation,
loading, and execution of .NET applications. The libraries provide code for common programming tasks, thus
increasing developer productivity. The libraries dso provide alayer over many OS APIs, providing an isolation from
OS dependencies.

Most enterprise applications and Web services require back-end servers to perform operations such as storing data,
exchanging messages via e-mail, and so on. Microsoft's family of .NET servers such as SQL Server, Exchange Server,
and so on, can be used to obtain such functiondity. The family dso includes some specid serversthat provide a

higher level of integration and aggregation of Web services. BizTak Server and Commerce Server, gpplication
frameworks for e-commerce, fal under this category.

The .NET platform aso includes a set of developer tools such as Visud Studio .NET and programming languages
such Visud Basic .NET and C# (pronounced C sharp).

In developing applications, developers can dso take advantage of the foundation services offered by Microsoft or
other software vendors. We take alook a afew important foundation servicesin alater section of this chapter.

13

Findly, the Windows operating system is a the base of the .NET platform. Operating systems such as Windows NT,
Windows 2000, and Windows XP do not come preinstalled with the .NET Framework. However, one can ingtal the
framework separately by downloading it from Microsoft's Web site. Windows .NET and the newer releases of the
Windows operating system are expected to ship with elements of the .NET vision.

The .NET Framework

The .NET Framework is a high-productivity, standards-based, multilanguage gpplication execution environment. It
conggts of aruntime environment called the common language runtime and a set of libraries to boost programmers
productivity.

Common Language Runtime

The common language runtime, or just the runtime, is Microsoft's implementation of the ECMA CLI specification.
When a.NET application is run, the common language runtime manages the loading and execution of the code and
provides many runtime services to the gpplication.

If you have been developing your code under COM, you will be surprised by the smplicity the NET mode offers.
Forget dedling with GUIDs, CLSIDs, PROGIDs, IDL, type-libraries, apartments, server registration, AddRef () ,
Rel ease(), and soon. They al have been replaced by asimpler mode of programming.

It would not befair to say that COM is dead. The basic tenet of COM, the ability for gpplications to communicate

across hardware and programming language boundaries, is ill present in .NET. In particular, thefirdt release of

the .NET Framework still depends on COM+ to provide enterprise services such as transaction and queuing. However,
the COM infrastructure has certainly been replaced under .NET.

Besides providing a smpler modd of communication, the NET runtime provides many other servicesto smplify

programming and to develop robust and secure applications. Any code that targetsthe .NET runtimeis called the

managed code;it can take advantage of the services offered by the NET runtime. All other code, including exigting

legacy code, is called the unmanaged code. Although, the common language runtime can execute the unmanaged code,
the code cannot avail the services provided by the common language runtime.

Let's examine some services provided by the common language runtime.
Simplified Deployment

In the smplest case, the directory hierarchy of an application can be copied to a machine and the application can be
executed. There is no need to modify any registry entry. Thisis referred to as XCOPY deployment.

The framework aso solvesthe "DLL hdll" problem. A common problem with Windows is thet upgrading a
dynamic-link library (DLL) routinely breaks an areedy ingtalled gpplication. Under .NET, two versons of an
gpplication can execute side-by-side without bresking any application.

14

Hardware Independence

When a.NET application is built, the code is stored in alanguage cdled Microsoft Intermediate Language (MSIL).
When the application is executed, the runtime performs ajust-in-time (JT) compilation to convert the MSIL code to
meachine ingructions. Thismakesa.NET application run on any CPU type, aslong asaJ T compiler is available for
the CPU. Moreover, the JIT compiler can perform hardware- specific optimizations, boosting execution performance.

Automatic Memory Management

When writing managed code, developers need not worry about memory deallocation issues. The runtime
automaticaly frees any unused memory using a mechanism caled garbage collection. Not only does this smplify
programming, but it also makes the gpplication more robust; as programmers sometimes smply forget to free
previoudy dlocated memory.

Cross-Language Integration

The .NET Framework defines a specification called the Common Language Specification (CLS). Among other things,
the CLS defines a set of datatypesthat isintended to work across dl .NET-compliant programming languages. If
these data types are used, the runtime provides seamless integration between gpplications developed in different
programming languages. Theintegration is so seamless that a type defined in one language can be inherited in ancther
language. Even exceptions can be thrown from one language and caught in another language.

Metadata Driven

An agpplication developed for .NET contains complete information about the types it implements, the methods each
type defines, the parameters for each method, and so on. The presence of such metadata €liminates the need for
COM-gtyle IDL and type libraries. This dso makesit possible to keep the Windows registry clean.

Enhanced Security

NET defines a permissionbased security mode thet offers fine-grained control over which assembly can access what
resource on the local machine. The security becomes especialy important when users access code over the Internet.
The runtime prevents the executions of any unauthorized code.

Interoperability

The runtime provides the functiondity to integrate with legacy COM sarvers. The runtime aso provides the ahility to
invoke any unmanaged code or Windows API's (although such an application may not be portable to other platforms).

Class Libraries

The .NET Framework aso provides hundreds of types (classes, interfaces, structures, etc.) that not only enable
programmeatic access to the features of the common language runtime, but aso provide a number of useful high-level
services to help developers boost their productivity. These types are collectively referred to asthe NET Framework
ClassLibrary.

15

The .NET Framework Class Library can roughly be broken down into four groups he Base Class Library (BCL),
ADO.NET and XML, Windows Forms, and ASP.NET.

The BCL implements the set of functiondlity that is shared by dl the gpplications targeting the NET Framework. It
defines and implements dl the core data types (e.g., string, integer, float, etc.) used by every gpplication.

ADO.NET isthe successor to an earlier data access technology caled Active Data Object (ADO). ADO.NET
provides a set of classes to access and manipulate data. The datais typically obtained from a database and can be
converted to XML for better remote manipulation.

Windows Forms (often called WinForms) provide festures for devel oping standard Windows desktop applications.
They provide arich, unified set of controls and drawing functions for al languages, effectively wrapping Windows
user interface (UI) APIsin such away that developers rarely would need to access the Windows APIs directly.

ASP.NET isthe successor to a Web-request processing technology called Active Server Pages (ASP). ASP.NET adds
two sgnificant enhancementsto ASP:

. It amplifies the process of developing Web services.

2. It providesamode of developing a Web browser-based Ul caled Web Forms. Controls on the Web Forms
run on the server but the Ul is displayed on the client browser. This takes lots of coordination and
behind- the- scenes activity. However, the end result is Web interfaces that ook and behave very much like
WinForms interfaces. Moreover, the Web interfaces can deal with a broad range of browsers such as
Microsoft Internet Explorer as well as less capable browsers such as the ones found on wireless pamtop

devices. WebForms will render themselves appropriately on the target device.

Development Tools

A productive set of toolsis critica to developer success on anew platform like NET. Microsoft offers many
devel opment tools to build Web services as well as traditiona Windows applications.

Programming Languages

NET offersan improved bal game for programmers. Features such as automatic memory management make it
unnecessary for programmers to ded with these issues. The .NET programming model encourages object-oriented

programming.

To smplify programming under .NET and to exploit the capability of the NET Framework to its fullest extent,
Microsoft has introduced anew programming language called C#, which offers the smplicity of Visud Basic and the
flexibility of C++. C# borrows mogt of its congtructs directly from C++, making C++ and Java programmers fed right
at home. More information about the origins of C# can be found in an interview with Anders Hejlsberg [Osb-00], the
chief architect for C#.

16

Microsoft has dso introduced Visuad Basic .NET, an upgrade to its popular Visua Basic programming language.
Visua Basic .NET adds object- oriented features aswell as provides full accessto .NET platform features. The new
feature list of Visud Basc.NET can befound in [Pat-01a] and [Pat-01b].

Microsoft has aso extended C++ to develop code for .NET. This extension isreferred to as Managed Extension for

C++.

Findly, .NET provides an open standard for devel oping language compilers that target .NET. Many independent
oftware vendors are providing their own programming language support for .NET.

The .NET Framework SDK

The .NET Framework SDK contains documentation, tools, C# and Visua Basic .NET compilers, and samplesfor
developersto write, build, test, and deploy .NET agpplications. The SDK aso includesthe .NET Framework asa
redistributable package.

The SDK can be downloaded free of charge from Microsoft's Web site. Remember to read the licensing agreement
when you download the SDK.

Visual Studio .NET

Visud Studio .NET isthe next generation of Microsoft's popular multilanguage devel opment tool, built especidly

for NET. Visud Studio .NET helps you build aswell as consume Web services and .NET agpplications quickly. It
supports C#, Visua Basic .NET, and C++. Any other .NET programming language can be eesily integrated into
Visua Studio .NET. The Integrated Development Editor (IDE) contains many festures, such as IntelliSense, to boost
programmers productivity. Visuad Studio .NET will likely remain the most popular choice for developing NET
applications.

Foundation Services

Microsoft aso envisonsthat providing a compelling user experience to consumersisimportant for the success of
Internet as a communication bus. To this effect, Microsoft plans to release some foundation or building block Web
sarvices. Software vendors can leverage againgt these foundation services. With time, Microsoft intends to release

more such foundation services.

The firgt set of foundation services are being released as a product called Microsoft NET My Services. Table 1.2 ligds

these sarvices.

Table 1.2. Microsoft .NET My Services

Name Description
.NET Address Billing, shipping, and other addresses
.NET Profile Name, picture, and so on

17

.NET Contacts

Electronic address book

.NET Location

Electronic and geographical locations

.NET Alerts Send and/or electronic notifications
.NET Inbox E-mail and voice-mail storage
.NET Calendar Appointment management

.NET Documents

Users can store, share, and back up important files

.NET ApplicationSettings

Application settings

.NET FavoriteWebSites List of favorite Web sites

NET Wallet Credit card information, coupons, receipts, and so on
.NET Devices Settings for various personal devices

.NET Services List of services provided

.NET Usage Usage report for the preceding services

A common theme behind Microsoft's foundation services is that the user information is stored at a centra place and

can be retrieved anytime, anywhere. These foundation services open the door for developing innovative software
applications. For example, using .NET Caendar, a scheduling application at your doctor's Web site might be able to
access your Web-hosted calendar to see when you are avail able, schedule an appointment a an appropriate time, and

remind you using .NET Alerts (on your PC, pager, or any other notification device) when the gppointment is

gpproaching. AsaWeb service is based on open standards, the scheduling application can be developed for Windows,

UNIX, or any other OS.

The foundation services are built around user identity. Microsoft provides a user authentication service cdled
Microsoft Passport that deserves specia attention.

User Authentication Service

Consumers do their Internet shopping on many Web sites. A common problem that they face today is that they are
asked to enter account information, such as user name and password, on each Web site they visit because each Web
Ste maintainsits own database of customers.

Microsoft Passport promises a solution to this dilemma. Rather than signing up for an account on every Web ste, the

user signs up for a Passport account, either through http://Amww.passport.conV or through related serviceslike Hotmall
(every Hotmail user automatically has a Passport account). The user can choose how much information to sorein the
M S Passport account from a simple user name and password to a complete walet with credit card information,

shipping and hilling addresses, and more.

Using Microsoft's single sigrn-in (SS1) service, a Passport member can use one sign-in name and password at all
participating Web sites. Passport sign-in names are tied to individuals and not computers, members can access

Passport sites from awide range of devices.

What Does It All Mean?

18

Microsoft's .NET initiative impacts consumers, businesses, software vendors, and devel opers.

Consumerswill be the biggest beneficiaries of .NET and the foundation services. Asthe datais stored on the Web,
they will be able to access documents and other persond information anytime, anywhere, from any smart device.

For businesses, implementing gpplications using Web services solves many of today's B2B and B2C integration
challenges.

By making their business gpplications available as Web services, or by providing innovative Web services, software
vendors may be able to find newer modes of revenue. Microsoft itsdlf is gravitating toward providing a
subscriptiont based model for its services, thereby ensuring a monthly source of revenue.

The .NET Framework helps devel opers write robust, secure, Internet-enabled code in alanguage of their choice. The
rich set of classlibraries provided by the NET Framework, aswell as new featuresin Visud Studio .NET will boost
devel oper productivity.

References

[W3C-01] Gudgin, Martin, et d., "SOAP Version 1.2," W3C Working Draft, July 2001.
www.w3.0rg/TR/2001/WD-soap12- 20010709/

[Osh-00] Oshorn, John, "Deep Inside C#: An Interview with Microsoft Chief Architect Anders Hejlsberg,” July 2000.
windows.oreilly.com/newshejlsberg 0800.html

[Pat-01a] Pettison, Ted, "Basic Instincts: New Featuresin Visual Basic .NET," MSDN Magazine, May 2001.
msdn.mi crosoft.com/msdnmagy/issues/01/05/indtincts/ingtincts0105.a50

[Pat-01b] Pettison, Ted, "Basic Instincts: Exploiting New Language Featuresin Visual Basic .NET, Part 2," MSDN
Magazine, August 2001. msdn.microsoft.com/msdnmag/issues/01/08/Instincts/I ngtincts0108.a5p

19

Chapter 2. From C++to C#

This chapter focuses on various stages of building .NET applications from development to debugging and deploying.
Y ou will write Smple C# programs to explore common programming paradigms under the NET Framework. Inthe
process, you will learn the differences and smilarities between C++ and C#. By the end of the chapter, readers will
understand many key concepts of the NET Framework and will be fairly comfortable developing smple .NET
gpplications using C#.

A Simple "Hello User" Program
Let's get right down to business. The following program displays a gregting to the console:

/1 Project Hell oUser

cl ass MyApp

{
public static void Main() {

System String user Nane = "Jay";
System Consol e. WiteLine("Hello " + userNane);

This simple application defines a class called My App that has a single static public method called Vai n. Under .NET,
methods must generdly be membersof acl ass orastruct.A cl ass orast ruct form thebasic unit of
organization under .NET and are generdly referred to as types. We explore the differences between acl ass and a

st ruct indeal in Chapter 4.

Static method VR N is considered the entry point for the program. When the program is run, the .NET runtime starts
executing the codein Mai n.

Inside method VA N is areference to two other types cdled Syst em Consol e and Syst em St ri ng. These

two types are defined in the BCL, alibrary provided by the NET Framework, and are implemented in
VBCor Li b. dI | file Among other methods, Syst em Consol e providesamethod W i t eLi ne towritea

sring to the console.

This code prefixes a greeting to the pecified user name and displays the resultant string to the console.

How are we ableto cal amethod suchasW i t el i ne fromthe Syst em Consol e classwithout even credting
an instance of the class? Thisis possible because this method ismarked asst at i ¢. Aswith C++, for any .NET
language, calling a static method on a class does not reguire the class to be ingtantiated.

20

Syst em Consol e actudly isthefully qudified name of dlass Consol e belonging to the namespace Sy st em
A namespace provides scope to your data types, thus reducing naming conflictsin large projects. Within asingle
namespace, no two types can have the same name. However, two types from two different namespaces can have the
same name, but by qudifying the type with its namespace, each type can be uniquely identified.

Obvioudy, typing fully qudified class names each time you refer to a class can quickly become unbearable.
Fortunately, C# allows away to declare the namespaces to be used up front. Thisis done with theusi ng keyword.

Using this keyword, our "hello user" code can be rewritten as follows:

/1 Project Hell oUser

usi ng System

cl ass MyApp

{
public static void Main() {

String userNane = "Jay";
Console. WiteLine("Hello " + userNane);

When processing the source file, the compiler searches for an identifier in the current namespace. If the identifier
cannot be resolved in the current namespace, the compiler then searches each of the namespaces specified in the
usi ng statements. For our gpplication, the compiler automaticaly resolves references to types Consol e and
St ri ng from the namespace Sy st em

Y ou may be wondering what the current namespace for class My App is. The code doesn't seem to scope the class
under any namespace. It just so happens that scoping a C# class within anamespaceis optiond. If not explicitly
scoped, a class automaticaly gets scoped under an unnamed namespace, aso called the global namespace.

Let's build our gpplication. The SDK provides acommand-linetool, csc. exe, to compile C# programs. Assuming
the codeisdefined infileHel | oUser . ¢s, the following command line, when executed, generates our executable:

csc.exe -t:exe -out:HelloUser.exe -r:MCorLib.dll HelloUser.cs
Command-lineswitch - t : exe tdlsthe compiler to generate a console user interface (CUI) executable as target.
Other possible targets are Windows user interface (WUI) executables (switch - t : Wi nexe) and library executables
(switch-t: 1i brary).

Switch - out can be used to specify the filename for the generated executable, Hel | oUser . exe inour case.

Switch - 1 reguires some explandtion.

The .NET Framework provides a number of library filesthat implement avariety of classes, such asthe one
introduced earlier, MSCor Li b. dl | . Theselibrary files are actualy referred to as assemblies. We cover assamblies

21

in detail in the next chapter. For now, it is sufficient to know that an assembly stores a collection of types(cl ass,
struct, ec.). Think of an assembly asalogicd EXE or DLL file. Even Hel | oUser . exe isan exampleof an

assembly.

While processing Hel | oUser . c¢s, the compiler needs to know which assembly to use to resolve reference to
external types Syst em Consol e and Syst em St ri ng. The specified compiler option, - r : M5Cor Li b. dl |,
tells the compiler to look for externd typesin MSCor Li b. dI | assembly.

Compiler Response File

g Thereisyet another way to specify the command-line parameters to the compiler. Y ou can

~— I specify someor dl of the parametersin atext file and ask the compiler to process thisfile
using the @f i | e> command-line option. Thisfileis referred to as the response file. For
example, you can create aresponsefileHel | oUser . r sp that contains the following text:

-t: exe
-out: Hel | oUser. exe
-r: MSCor Li b. dl |

To generate the executable, you can now use the following command:
csc.exe @del |l oUser.rsp Hell oUser. cs

If you just namethefilecsc. r sp, the compiler will dways autometicaly read it. The NET
Framework suppliesacsc. r sp responsefilethat islocated in the same directory as
csc. exe. The compiler dwaysreadsthisfilefirs, followed by acsc. r sp filefromthe

current directory, if present.

You canturn off reading csc. r sp filesby specifyingthe oconf i g option to the
compiler.

Notethat MSCor Li b. dl | isaspecid filein the sensethat it contains dl the core types such asintegers, characters,
strings, and so on. As these types are used so frequently, the C# compiler automatically references VSCor Li b. dlI | .
This makes our command-line option, - r : MSCor Li b. dlI | , redundant.

Besides VBCor Li b. dl | , there are many other assemblies in the framework that also get used frequently. These
asemblies are dll listed in the framework-supplied csc. 1 sp file

The C# compiler generates a console executable by default (i.e., if no target typeis specified) and, if the output
filename is not specified, it is named as the firgt source filename with the extension replaced as . exe. Thus, our

previous command line can actudly be reduced to the following and gtill would produce the same result:
csc. exe Hell oUser. cs

22

Let'srun our gpplication, Hel | oUser . exe. Thefollowing is the output:
Hel | o Jay
Congratulations! Y ou just completed your first .NET program.

Behind the Scenes

Hel | oUser . exe isasandard Win32 portable executable (PE) file, that is, the Windows OS should be able to load
thisfile and, if required, execute the indructions stored in the file. However, unlike normal PE files,

Hel | oUser . exe doesnot contain native machine language ingtructions. Instead, it contains codein MSIL. MSIL
code resembles assembly language ingtructions.

So how doesHel | oUser . exe run and produce the desired output? After al, amachine can execute only the native

code.

The NET Framework provides the common language runtime environment to manage the execution of MSIL code.
Any code that targets the common language runtime is called managed code; it benefits from many features offered
by the common language runtime. One such feature is on the fly conversion (also referred to as J T conversion) of
MSIL code to native machine language indructions.

Why not just produce the netive code in the first place? Recall from the previous chapter that Microsoft envisions
making .NET available on awide range of devices. As machine language instructions are tied to a specific processor
type, the same executable may not be able to run onadevice with a different processor type. By compiling program
logic into a processor-independent intermediate language, .NET makesiit possible to achieve platform independence.
Plus, the generated native code can take advantage of hardware-specific optimizations.

What Is Managed Code?

g For the common language runtime to manage the execution of the code and to provide festures

— | tothe code, the managed code contains extrainformation about the code, such as the methods
availablein aclass, the parameters and return value for each method, and so on. This extra
information is called the metadata (data about data). MSIL code is always managed code.

Unlike managed code, unmanaged code does not contain any .NET style metadata. Examples
of unmanaged code are COM gpplications and any legacy software. Although unmanaged code
can execute under the common language runtime, it cannot benefit from its feetures.

Wewill look a common language runtime and its features in detail in Chapter 4.

At this point, we have aready covered quite afew important terms used under .NET. Hereisasmall quiz for you. Can
you define the terms M SIL, the common language runtime, type, assembly, namespace, and BCL ? For your
convenience, | have defined them once againin Table 2.1.

23

Table 2.1. .NET Terminology

Name Description
MSIL Microsoft Intermediate Language. It resembles assembly language instructions.
Common The heart of .NET. It provides the runtime environment for executing .NET applications.

language runtime |Also referred to as the .NET runtime or simply run-time.

Type Basic unit of encapsulating data with a set of behaviors. Classes and structures are

examples of types.

Assembly A logical DLL or EXE file that contains type definitions and their implementation.

Namespace A logical scoping of types. By qualifying a type with a namespace, naming conflicts

between types can be reduced.

BCL Base Class Library. A library that contains core types such as Syst em Stri ng. The

BCL is spread over a couple of assemblies. M5Cor Li b. dI | is one such assembly.

Pleasereview Table 2.1. It is very important that you get accustomed to these terms, as we use them quite frequently
throughout the book.

C# for C++ Programmers

C# offers many festures that make a C++ or Java programmer fed right a home. The curly braces and the statements
ending with semicolons al made their way into the language. However, C# dso introduces many new fegtures. Some
features will make a Java programmer more a home. Let'stake a brief ook a afew of these features. In many
respects, we redlly are examining the programming language support provided by the NET Framework.

Before we proceed further, it is worth discussing the coding conventions that has been adopted by the NET
community. The Visud Studio .NET documentation includes an article on coding techniques and programming
practices for improving the qudity of the source code. Search for "Coding Techniques' under the documentation.
Some important ones regarding naming conventions that | wish to mention are asfollows:

Since most names are constructed by concatenating several words, use mixed-case formetting to Smplify
reading them.

Use Pascal casing for methods, properties, and events (the | atter two covered shortly). Here, thefirst |etter of
each word is capitaized. An example of amethod nameis Get Di r ect or yNane and a property is
User Nane.

Use camd casing for member fields, locd variables, and method parameters. In this case, thefirst letter of
each word except the firgt is capitaized. Some examplesare di r Name and docunent Type.

Avoid Hungarian notetion if possible. Many languages under .NET (eg., Visua Basic .NET) do not have
this nation. The only exception | haveisthat | prefer member fidds to be prefixed with m . This hepsme
differentiate between member fields and local variables.

Primitive Data Types

24

Like any other typed programming languages, C# provides its own primitive datatypes. However, C# primitive types
are nothing more than amapping to the base datatypes supported by the common language runtime. For example, C#
primitive datatype st r i ng isandiasof Syst em St ri ng, aclassthat we have dready come across. As a matter

of fact, the following two lines of code generate identical compiler output:

string = "Jay";
System String = "Jay";

This begs the following question: Should you usest ri ng or St r i ng inyour code? Thisisredly amatter of

persona preference.

The base types supported by the common language runtime are dl defined in the BCL. Table 2.2 shows alist of C#
primitive datatypes and their corresponding BCL counterparts.

Table 2.2. C# Primitive Datatypes

C# Type Description BCL Type

bool 32-bitt r ue/f al se value Syst em Bool ean
shyt e 8-bit signed integer Syst em SByt e
byt e 8-bit unsigned integer System Byt e
char 16-bit Unicode character Syst em Char
short 16-bit signed integer System I nt 16
ushort 16-bit unsigned integer System Ul nt 16
i nt 32-bit signed integer System I nt 32
ui nt 32-bit unsigned integer System Ul nt 32
[ong 64-bit signed integer System I nt 64
ul ong 64-bit unsigned integer System Ul nt 64
f | oat IEEE 32-bit float System Si ngl e
doubl e IEEE 64-bit float Syst em Doubl e
deci nal 96-bit monetary type (used in financial calculations) Syst em Deci nal
string String of Unicode characters System String
obj ect Root system class Syst em bj ect

Take note of the datatype Sy st em Cbj ect . Thistypeisthe root class; all other types get derived from
Syst em Qbj ect , either directly or indirectly (through another type that ultimately gets derived from
Syst em Obj ect). Weexamine Syst em Cbj ect indeail in Chapter 4 when we discussthe .NET
infrastructure.

Member Accessibility

Under C#, the accessibility level of atype, and each member of the type (method, member field, etc.), can be
individualy controlled by means of specifying an access modifier on the member. Table 2.3 showsthelist of possible
access modifiers,

25

Table 2.3. Access Modifiers under C#

Modifier Description

public Access is not restricted. Any method from any type can access this member.

private Access is limited to the containing type.

pr ot ect ed Access is limited to the containing type and any of its derived types.

i nternal Same as publ i ¢ except access is limited to the current assembly. External assemblies
have no access.

protected Full access within the current assembly. For external assemblies, access is limited to

i nternal types that are derived from the containing type.

seal ed When applied to a class, the class cannot be inherited. When applied to a overridden

method, the method cannot be overridden in a derived class. Structs are implicitly
sealed.

Thefollowing code excerpt demonstrates how access modifiers can be gpplied to atype and its members:

/1l Project AccessMdifiers

public class Foo

{

public int x;

i nt er nal

intvy;

protected internal int z;
private void Test1() {}
public void Test2() {}

Note that specifying access modifiersis not mandatory. If not specified, the member defaultsto privatefor acl ass

orastruct andpublicforani nt er face oranenum

Also note that atop-level type, such as class FOO in our example, can itsdf be qudified withapubl i ¢ access

modifier. This makes the class accessible from external assemblies. If not explicitly specified, atop-leve type defaults

tothei nt er nal accesshility leve.

Field Initialization

Consider the following code excerpt:

/1 Project Fieldlnit

class Foo {

private int x;
private String y;
private Baz z;
public Foo() {

26

10;
= "Hello",;
new Baz();

N <
1

}
/1 O her nethods

Initiaizing a class member fieldsin the dlass instance congtructor is acommon programming technique. C# offersa
shorthand mechanism to achieve thistask. The filds can be initidized at the time of their declaration, as shown here:

class Bar {
private int x = 10;
private Stringy = "Hello";
private Baz z = new Baz();

/1 O her nethods

Note that you can gill define a congtructor and initidize the fidds., If afidd isinitidized in the declaration Satement
aswdl asin the instance condructor, the runtime initidizes the field twice, first from the declaration and then from
the instance constructor.

Type Constructors

You are dready familiar with instance congtructors, which are responsible for setting an object ingtance toitsinitia
gtate. In addition to instance constructors, C# (and the NET Framework) supports type constructors (also known as
gtatic constructors or class congtructors). A type congtructor lets you perform any initidization required before any
members declared within the type are accessed. The common language runtime guarantees that the type constructor
gets executed before any instance of the typeis created or before any static field or any method is referenced.

To understand type congtructors, consider the following C# code:

cl ass Foo {
static public int x = 10;

When this code is compiled, the compiler automatically generates a type constructor for FO0. This congtructor is

responsble for initidizing the vaue of static member varidble x to 10.

In C#, you can aso implement the type constructor yoursdlf. You just need to define a constructor on the type and
qudify itwith st at i ¢ keyword, asillustrated here:

/1 Project TypeConstructor

cl ass Foo {

27

static public int x;
static Foo() {
x = 10;

Note that atype congtructor does not accept any parameters and it can access only the static members of the type. Its
usud purposeisto initidize atic fidds.

Reference and Value Types

Under C#, some datatypes can be ingtantiated only on the stack, whereas other datatypes can be instantiated only on

the heap. Simple datatypes (i nt , | ong, doubl e, etc.) and st r uct s are awaysingantiated on the stack. These

types are called value types. Types that are crested on the heap are called reference types. C# classes belong to the
reference type; thet is, aningance of acl ass isaways created on the heap.

Thereisoneexceptiontotherule f avauetypeis contained within areference type, then the value typeis crested
on the hegp (at the time the reference type is being ingtantiated).

A datatype can be ingantiated using the new keyword, as shown here:

cl ass Foo

{

Foo a = new Foo();

Note that when instantiating an object on the heap, there is no need to use C++ style pointer declaration. As a matter
of fact, the C# compiler prevents you from specifying a pointer unless you mark your code as unsafe. Unsafe modeis
primarily used for interoperability with C-style APIs, which we discussin alater chapter.

It is possble to ingtantiate a vaue type without using new. In this case, however, the ingtance hasto beinitidized
beforeit is used. Otherwise, the compiler generates an error. The following code excerpt illugtrates this:

public void sub()

{
int a=newint(); // Legal
int b;
int ¢c=Db; // Illegal. b has to be initialized first
int d=05;
int e =d; // Legal
}

28

It isworth noting the dissmilarity between C# and C++ when tregting the value type. Under C++, you can create a
vaue type either on the stack or on the hegp. For example, the following C++ line of code creates an instance of i nt

type on the heap:

int* p =newint();

Thefdlowing line under C#, however, creates the instance on the stack.
int p=newint();

From a programming perspective, there is an important distinction between the reference type and the vaue type.
When areference type variable is assigned to another, the memory location for the underlying object is shared. In
contrast, vaue type variables hold a separate copy of the object. The following code excerpt demongrates the
behavior for the reference type:

/'l Project ReferenceType

public class Foo

{

public int x;

public static void Test(Foo a, Foo b) {
a.x = 5;

b.x = 10;

b = a;

Console. WiteLine(b.x); // will display "5"
a.x = 20;

Consol e. WiteLine(b.x); // wll display "20"

s

Note that if one reference type variable is assigned to another, changing amember fidd's value via one variable causes
the value for the corresponding member field in the other variable to change.

Findly, the common language runtime provides for automatic conversion between a vaue type and areference type
wherever possible. Conversion of avaue type to areference type is caled boxing and the conversion from areference
typeto avduetypeis caled unboxing. We look a boxing and unboxing and its performance impact when we discuss
the internas of the common language runtime in Chapter 4.

Arrays

The notion of an array issimilar to that in C and C++: An array contains elements that can be accessed through
indexes. All the dementsin an array should be of the same type. The length of the array is the number of dementsit
can contain and the rank of an array isthe number of dimensionsin the array.

29

The following code shows how to create an array of four elements of typei nt :
int[] arr = newint[4];

The following code shows how to creste an array and initidize it with values:
int[] arr = newint[] {20, 10, 40, 30};

Note that the length of the array need not be explicitly specified. The compiler automaticaly computes the proper
length based on the number of eements.

Here isthe traditiona C way of accessing the dementsin an array:

/1 Project Arrays

for(int i=0;i<arr.Length;i++) {
Console. WiteLine(arr[i]);

C# dso defined akeyword f or each to repest agroup of satements for each element in an array, as shown in the
following code excerpt:

/1l Project Arrays

foreach(int elemin arr) {
Consol e. WiteLine(elem;

Behind the scenes, an array gets derived from Syst em Ar r ay class. This class provides methods for creating,
manipulating, searching, and sorting arrays. For example, the following code sorts our array in ascending order:

Array. Sort(arr);
The following code searches for an dement of value 50 in the sorted array using the binary search dgorithm:

int index = Array. Bi narySearch(arr, 50);
Consol e. WiteLine ((index < 0) ? "Not found" : "Found");

The returned value contains the index of the dement if amatch is found. Otherwisg, it returns a negative number that
is abitwise complement of the index of the first element that islarger than the specified vaue.

Arrays and Binary Search

30

(L Always ensure that the array to be binary-searched has been sorted. Performing abinary search

: on an unsorted array results in unpredictable behavior.

Also, note that if amatch is not found, the return value could be any negetive number and not
necessaily 2. Do not specificdly check for ?in your code.

Once dlocated, the size of an array cannot be changed. If you need an array that can grow dynamically, take alook at
ArraylLi st,asmarter cousnof Array.

Properties

Under the common language runtime, a property is a controlled way of exposing a classs member fieldsto the client
code. Insteed of exposing the member field directly to the client, using a property provides a smart way to validate the
input value or to restrict access to the data member.

A property can have a get accessor (code responsible for reading a member field's value), a set accessor (code
responsible for setting amember field's vaue), or both. A property without a get accessor iswrite-only and a property
without a set accessor is read-only.

The following code excerpt demonstrates how to define a property under C#:

/'l Project Properties
class Foo {

private String muserNang;

public String UserNane {
set {
m user Nanme = val ue;
}
get {
return m.user Nane;

Under C#, keyword get isused to implement the get accessor and keyword set is used to implement the set
accessor. For the set accessor, the input value is stored in an implicit parameter named val ue. The preceding code
shows how the member varigble m_user Nane can be exposed via property User Nane.

The following C# code excerpt shows how to set or get a property:

31

Foo x = new Foo();

X.UserNanme = "Jay"; // calls the set accessor on User Nane
String y = x. UserNane; // calls the get accessor on User Nane

Indexers

Much like C/C++, C# provides indexed access to an element of an array. Under C#, however, indexed accessis not
just limited to array types. A typesuch asacl ass orast r uct can aso be accessed using anindex. Thisis done
by defining an indexer on the type. An indexer isaspecid property namedt hi s that takes an index as parameter.

The following code excerpt shows how to define anindexer. Here, class FOO isjust awrapper for agtring array:

/'l Project |ndexer

cl ass Foo {
public Foo(int val)

{
marr = new String[val];
}
public String this[int index]
{
get {
return marr[index];
}
set {
m arr[index] = val ue;
}
}

private String[] marr;

s

As can be seen, defining an indexer is similar to defining a property. Aswith properties, you can drop either one of

the accessors.
The following code excerpt illustrates how to get indexed accessto FooO:

public static void Main() {
Foo f = new Foo(5);
f[o] = "Jay";
Consol e. WitelLine(f[0]);

32

Remember that al the code used in this book is available on the companion Web site.

Delegates and Events

A ddegate is roughly equivdent to afunction pointer in C; it encapsulates a method with a specific signature. Unlike
afunction pointer, however, a delegate is type-safe; the prototype of the function assigned to the delegate has to
grictly match the delegate definition.

The following code shows an example of defining a delegate:
public del egate void M/Del egate();

In this code, type My Del egat e encapsulates a function that takes an empty parameter list and hasavoi d return
type.

The following code excerpt shows how to declare avariable of MyDel egat e type Theintention isto smulate
clicking a Windows button.

public class MyButton {
public MyDel egate i ck;
b

Even though a member varigble can be exposed to the public directly, it isagood practice to expose it as a property.

Therevised code is shown here;

/1 Project Delegates

public class M/Button {
private M/Del egate m d i ck;
public M/Del egate Cick {

get {

return mdick;
}
set {

m dick = val ue;
}

A delegate can store either a tatic method or an instance method as a callback éement, as shown in the following
code:

public class M/App {
public void X() {
Consol e. WitelLine("Instance nethod cal | ed");

33

static public void Y() {
Consol e. WitelLine("Static nethod called");

static void Main() {
/'l create a button
M/Button btn = new MyButton();

/1 Case 1: Adding a static method to the del egate
btn.dick += new MyDel egat e(MyApp. Y) ;

/1 Case 2: Add an instance nmethod to the del egate

M/App a = new MyApp() ;
btn.dick += new MyDel egate(a. X);

/1 Simulate button click (invoke the del egate)
btn.dick();

The last statement in the preceding code invokes the delegate (thisis equivaent to smulating a button click in our
example). When the delegate is invoked, it resultsin cdling each element on the invocation list. Here is the output
from the program:

Static nethod call ed
I nst ance nethod cal |l ed

Note that the code uses += syntax for specifying the calback elements. Under C, you are used to assgning asingle
cdlback function to afunction pointer. This functiondity is till supported under NET ou canassgnasingle
calback element to adelegate using the = operator. However, delegates under .NET aso support multicast
functiondlity; that is, asngle delegate can have a calback list of more than one dement. C# uses += syntax to pecify

additiond callback elements on a delegate.

Although delegates can be used as a notification mechanism, the NET Framework introduces aforma notion of event
for this purpose. Keyword event can be applied to a ddegate field or a delegate property to convert it to an event, as
shown in the following code:

/1l Project Events

public class M/Button {
private event My/Del egate m d i ck;
public event MyDel egate Cick {
add {
m d i ck += val ue;

}

remove {
m dick -= val ue;

Note that an event property differs from anorma property in the sense that the accessors are defined using add and
r enove keywords. Also, unlike anormal property where defining just one accessor is permitted, an event property
requires both the accessors to be defined.

The callbacks can be added to the event similar to that for delegates. However, the preferred term for the callbacksin
this case is event handlers.

Events introduce a few subtle changes to the way a delegate works. One important changeisthat only the class that
defines the event can raise the event. The following line of code taken from class My App of our previous example on

delegates will not work any more:

btn.dick();

A work-around isto add a method to the event holder classto raise the event, as highlighted in the following code:

public class M/Button {
private event M/Del egate m d i ck;
public event MyDel egate dick {

add {
m dick += val ue;
}
remove {
m dick -= val ue;
}
}
public void RaiseEvent () {
if (null '=mdick) {
m dick();
}

H
Now the usars of class MyBut t on cancdl Rai seEvent to raisethe event.

Note that the event variable holdsanul | reference until an event handler gets added. Therefore, it isagood ideato
check for nul | before invoking the delegate.

35

Invoking a Delegate

e Always check for null before invoking a delegate.

- -

- b

Programming sample Event s aso definesaVisud Basic .NET project My VBApp that demonstrates how events can
be used across languages. Interested readers may wish to look a the source code which can be found in the file

My VBApp. vb.
Method Parameters

Under C#, when amethod is defined, each argument can be marked as either an input to the method, an output from
the method, or an input aswe| as an output.

Specifying an input parameter is Smilar to pass-by-vaue semantics in C++. Hereis an example:
void MyMet hod(int vall, String val 2);

Asin C++, the parameters are passed on the stack; that is, My Met hod getsaloca copy of the parameters. Any
change made to these parameters within the function does not get reflected in the caller's space. Obvioudy, if a
parameter is of reference type, it is pointing to the memory in the hegp. Therefore, any change made to its contentsis
aso reflected in the caller's space.

If the parameter isintended to be used purdly as an output type, then it can be attributed with the out keyword, as
shown in the following code:

/1l Project Paraneters

/1 Method declaration
voi d MyMet hod(out 1nt32 vall, out String val 2);

/1 Caller code

I nt 32 count;

String nane;

M/Met hod(out count, out nane);

Note that the caller need not initidizethe out type arguments.

Astheout type arguments are meant only for updates within the method, any attempt to read the parameter within
the method is flagged as an error by the compiler.

36

To indicate that a parameter will be used both as an input to the method and an output from the method, the parameter
must be qudified withther ef keyword.

If ar ef keyword is specified, the parameters must be initialized (assigned a value) before the method can be called,
as demondrated in the following code excerpt:

/1 Method declaration
void MyMet hod(ref I1nt32 vall, ref String val 2);

/1 Caller code

Int32 count = 5;

String nane = "Pradeep”;

M/Met hod(ref count, ref nane);

Implementation Inheritance

C# lets one dass inherit implementation from another class, much like C++. The following C# code excerpt
demongtrates the syntax for implementation inheritance:

cl ass Derivedd ass : SoneBased ass {

Unlike C++, however, C# redtricts the implementation inheritance to a single parent; that is, a child class cannot have
more than one class as its parent.

Note that this regtriction is actudly placed by the common language run-time; C# just enforcesit. Later in the chapter,
we look at another kind of inheritance called interface inheritance that somewhat offsets for this restriction.

If adassisnot explicitly inherited from another dass, asin our previous examples, then C# implicitly inheritsit from
Syst em Obj ect . Recdl that Syst em Obj ect istheroot classfor any type defined under .NET.

Often, a base class needs to be initiaized with some vaue during the construction of the derived class. C# provides a
keyword base for this purpose. The following code excerpt demonstrates the use of this keyword:

/1 Project Inheritance

cl ass MyBased ass {
public MyBaseCd ass(String a) {

cl ass MyDerivedd ass : M/Based ass {

37

public MyDerivedd ass(String b) : base(b) {

Inthissample, MyBaseC ass requiresa St r i ng parameter in its constructor. When MyDer i vedd ass is
indantiated in the code, the constructor argument passed to MyDer i vedC ass (whichisaSt r i ng type) gets
passed to its base class, MyBaseCl ass.

Keyword base can aso be used from any method in the derived dlass to explicitly indicate that the method or the
field being accessed is that of the base class, asilludtrated in the following code excerpt:

/'l Project I|nheritance
cl ass MyBased ass {

public String MyMet hod1() {
return mval;

cl ass MyDerivedd ass : My/Based ass {

public String MyMet hod2() {
return "Hello " + base. MyMet hod1();

Error Handling

Windows C++ programmers have to deal with myriad (and inconsistent) ways of obtaining error information. For
example, Win32 APIs return DWORD error code. COM APIsreturn HRESULT. Visud C++ built-in support for COM
throws _com er r or exceptions.

Under the NET Framework, thereis only oneway of indicating an error y throwing an exception. Moreover,
exception handling is uniform across dl the languages. For example, an exception thrown from C# can be handled by
Visud Basic .NET.

All exceptions under .NET are ultimately derived from Sy st em Except i on, acdlassdefined inthe BCL. The
following line of code shows how to throw an exception containing an error string:

/1 Project ErrorHandling
voi d MyMet hod() {

38

t hr ow new Excepti on("Houston, we have a problen');

Although one can throw exceptionsusing Sy st em Except i on, it isintended to be used only by the common
language runtime and the .NET Framework classes. For application developers, the preferred way is to use another
exception class, Syst em Appl i cat i onExcept i on, to return goplication-specific errors.

System Appl i cati onExcepti on extendsSyst em Except i on but doesnot add any new functionality.

An exception that is thrown by a method can be caught by any of the cdlersinthecdl chanusingat r y- cat ch
block, asillugtrated in the following code excerpt:

public void Test() {

try {
MyMet hod() ;

}cat ch(Exception e) {
Consol e. Error. WiteLi ne(e. Message) ;
Consol e. Error. WiteLine(e. StackTrace);
Consol e. Error. WiteLi ne(e. Source);

Syst em Except i on provides anumber of helpful properties such as Message (contains the error message),
St ackTr ace (thetrace of cal sequence), Sour ce (the name of the application), and so on.

If the caller wishes to provide some cleanup code, at ry- f i nal | y block can be used, as shown in the following
code excerpt:

public void Test() {

try {
MyMet hod() ;
Hinally {

Consol e. Wi teLi ne("M/ cl eanup");

Note that the codeinthef i nal | y block is caled irrespective of whether or not an exception occurs. If an exception
does occur, it gets propagated tothenext t r y- cat ch block in the call stack.

To catch an exception and provide the cleanup code, at r y- cat ch- f i nal | y block can be used, as shown here:

public void Test() {

try {
MyMet hod() ;

}cat ch(Exception e) {

39

Consol e. Error. WiteLi ne(e. Message) ;

}inally {
Consol e. Wi teLi ne("M cl eanup");

The language aso provides the mechaniam to throw the same exception that was caught, as shown in the following
code excerpt:

public void Test() {
try {
My/Met hod() ;
}catch(Exception e) {
Consol e. Error. WiteLi ne(e. Message) ;
t hr ow,

Eventhough Syst em Excepti on (or Syst em Appl i cati onExcept i on) providesamechanism to return
an error string, sometimes it is desirable to obtain extra error information. This can be done by extending the

Appl i cati onExcept i on class. Thefollowing code excerpt shows an exception class that aso returns an integer
error code:

public class MyException : ApplicationException
{

private int merrorCode;
public MyException(String sMsg, int eCode)
base(sMsg) { // pass error string to the base cl ass
m er r or Code = eCode;

}
public int ErrorCode {

get {
return merror Code;

i
The cdler can catch this pecific exception type, if interested, as demondtrated in the following code:

public void Test() {

try {
MyMet hod() ;

}cat ch(MyException e) {
Consol e. Wit eLine(e. Message) ;
Consol e. Wit eLi ne(e. Error Code) ;

40

}cat ch(Exception e) {
Consol e. Error. WiteLi ne(e. Message) ;

Findly, when the cdler catches an exception, it can rethrow a new type of exception while still preserving the
information from the caught exception. The Except i on class provides a property caled | nner Except i on that
can be used to store the caught exception. Thisin effect provides amechaniam to cascade dl the exceptionsin the call
gtack. The following code excerpt shows a class that preserves the old exception while providing for its own error
information:

public class MyExcepti onEx : Applicati onException
{

private int merrorCode;

public MyExceptionEx(String sMsg, int eCode, Exception e)
base(sMsg, e)

m er r or Code = eCode;

}
public int ErrorCode {

get {return merrorCode;}
i
The following code excerpt demonstrates displaying error messages from a cascaded exception:

voi d DunpExceptionl nf o(Exception e) {
Consol e. Error. WiteLi ne(e. Message) ;
Exception i nnerE = e. |l nner Excepti on;

while(null '=innerg) {
Consol e. Error. WiteLi ne(i nner E. Message) ;
i nner E = i nner E. | nner Excepti on;

}

Garbage Collection

C++ programmers will detect the noticeable absence of thedel et e keyword in C#. We know that under traditional
C++, an ingance of aclass created (with keyword new) if not deleted (with keyword del et e) resultsin aresource
leek. Things are different for code that targets the common language runtime. Recall that any code that targets the
common language runtime is called managed code; it benefits from many features offered by the common language
runtime. One such feature is memory management the common language runtime automatically detectsif an dlocated
memory resource is no longer in use and frees it for us. This mechanism is caled garbage collection. Because the
garbage collector knows when to delete an object, there is no need to explicitly delete the object.

41

Note that, asin C++, you can define destructors on your C# classes. However, the destruction of your object is not
deterministic under .NET. Y ou cannot rely on the destructor to be called, for example, at the time a variable goes out
of scope. The destructor may be called later, at the time of the garbage collection.

To help cope with thislack of determinigtic findization, NET proposes an dternate technique. Welook at this
technique in Chapter 4 when we examine the mechanics of garbage collection.

At this stage, | think we have covered enough basics of C# language. As we go through the rest of this chapter and the
following chapters, we will discover many other features of the language. Meanwhile, those who wish to get more
familiar with C# may wish to read Joshua Trupin's MSDN article [Tru-00] or can pick up a copy of Eric Gunnerson's
book, A Programmer's Introduction to C# [Gun-00]. Some C# traps awaiting the unwary programmer can be found in
[Lib-01]. C# has aso been submitted to the ECMA, an internationa standards organization. The draft specifications

of the language can be picked up from [Misc-00].

For now, | am anxious to do some coding.

Common Programming Paradigms
In this section, we explore some common programming paradigms under NET
Client/Server Programming

Software engineering, to alarge extent, is about writing software such that generic code can be reused in multiple
gpplications. Let's rewrite the very first program we wrote. Thistime we factor out the logic for greeting the user. The
intent is to provide the ability to reuse this greeting code in any other application.

Wefirg develop a console-based application.

Console-Based Greeting

Hereis our new dass that implements the greeting logic:

/1 Project Reusabl eCode, File Consol eG eeting.cs
usi ng System

nanmespace MyGreeting {
cl ass Consol eG eeting {

private String muserNane;

public void Geet() {
Console. WiteLine("Hello " + muserNane);

42

public String UserName {

set {

m user Nane = val ue;
}
get {

return m.user Nane;
}

This class definesamethod, G eet , which displays agresting to the console. To make things dightly more
interesting, | have scoped this classinto anamespace, My G eet i ng.

Hereisour new implementation of My App class, revised to usethe Consol eG eet | ng class. The changes have
been highlighted.

/1 Project Reusabl eCode, File HelloUser.cs
usi ng System
using MyGreeting;

class MyApp

{
public static void Main() {

Consol eGreeting obj = new Consol eGeeting();
obj . User Nane = "Jay";
obj . Geet();

Firs we create an instance of classConsol eG eet i ng. Once an object is obtained, we set the user name on the
object and invoke the method G- eet on the object.

Let's build the gpplication. Assuming the greeting code has been saved in Consol eGr eet i ng. cs, hereisthe
command line to build the application:

csc. exe Hel l oUser.cs Consol eGreeting.cs

Compile and run the program. The results should be the same as the one from our previous run (Project

Hel | oUser), only now we have some reusable code in the form of file Consol eG eet i ng. cs. Thisfilecan
potentidly be used with any other gpplication being developed. As a software vendor, you can even sdll this source
code to other companies that can useit to build their own applications. Admittedly, there is not much meet in our code
to be a sdllable product, but it doesillustrate the point.

Reusing a piece of software logic at the source code level, however, has one mgor problem. Let's say a bug is found

in the reusable code after dl the applications using this code have been shipped. Once you fix the bug, thereis no way
to fidd-replace just the fix. Y our only choiceisto build al the dependent applications once again and ship them to the
customers.

The crux of the problem is that the reusable code has been linked and absorbed in the final executable during the
compilation process. Once the executable has been created, any change in the reusable code does not get reflected in
the already generated executable.

We need to get away from such dtatic linking of reusable code. If we could package the reusable code as a separate
library that can be linked to the application during runtime, then field-replacing such alibrary would be relatively easy.
Obvioudly, the runtime has to support such "dynamic" linking of alibrary when the gpplication is executed.

Fortunately, the common language runtime provides a mechanism to load alibrary dynamically as and when an
gpplication needsto useit. Asyou may have guessed, such alibrary is caled an assembly. Even the very first program
that we wrote used such an assembly MSCorLib.DlIl. If abug isfound in, for example, Consol e. Wi t eLi ne,dl
that Microsoft has to do isfix the bug and fidd-replace MSCor Li b. DI |, with no need for usto rebuild our

gpplication(s).

An assembly that provides the software logic that can be used by other applicationsisloosdly referred to as a server.
An application usng such asarviceis caled aclient.

Let'suseour MyGr eet i ng classto build alibrary assembly. Here is the modified code excerpt for the class:

/1 Project dientServer

usi ng System

nanmespace MyGreeting {
public class Consol eGeeting {
private String muserNane;

public void Geet() {
Console.WiteLine("Hello " + muserNane);

Note that we had to specify keyword publ i ¢ on the class. Without this access modifier on the class, the client
gpplication will not be able to access any methods from the class, even if the methods themselves are marked as
public.

Hereisthe command line to build the library assembly:

csc.exe -t:library Consol eG eeting.cs

Option ?TT>t:library tells the compiler to build alibrary assembly. The generated output file is named
Consol eGreeting.dll.

The client code requires no changes. The only change isin the command-line parameters; we need to |et the compiler
know that our client code references Consol eGr eet i ng. dl |, asshown herel

csc.exe -t:exe -r:ConsoleGeeting.dll HelloUser.cs

Build and run the client application. For now, make surethat Hel | 0- User . exe and Consol eGreet i ng. dl |
are both in the same directory. In alater chapter, we look at how an assembly can be placed in alocation such that

multiple gpplications can accessit.

By bregking a monoalithic application into client and server assemblies, we achieved our god of field-replacing just
the broken assembly without requiring a change to any other assemblies.

Thereis yet another problem that we solved inadvertently the problem of reusing software logic across programming
language boundaries. Take alook at Consol eG eet i ng. ¢s the codeiswritten in C#. If you wish to reuse this
code in another programming language, such as Visua Basic .NET, it is practicaly impossible. The Visuad

Basic .NET compiler cannot possibly compile C# source code and link it with Visual Basic .NET code. Thanks to the
common language runtime, however, it is easy to reuse assemblies written in one language to be reused from
assemblies written in another language. The following Visua Basic .NET code, for example, shows how to reuse the
codefrom Consol eG eeti ng. dl | :

| mports MyGreeting

Modul e MyVBApp

Sub Mai n()
D mobj As New Consol eG eeting()
obj . User Nane = "Jay"
obj . Geet ()

End Sub

End Mbdul e

The .NET SDK ships with acommand-linetool, vbc. exe, tobuild Visud Basic .NET gpplications. Assuming this
codeissaved in My VBApp. Vb, the following command line shows how to compile My VBApp. vb to build
My VBApp. exe, our client application:

vbc. exe -t:exe -r:Consol eGeeting.d | MVBApp.vb

The reason this cross-language operability is possible under .NET is because dl the .NET compilers generate output
in the same intermediate form, MSIL. In this respect, any programming language under .NET is afirst-class language.
The choice of a programming language is more of a preference issue.

Let's now develop a server that displays a gregting using the graphica user interface (GUI).
Windows-Based Greeting

The .NET Framework provides aclass, MessageBox, under the namespace Syst em W ndows. For ns that
provides a static method Show to display a message box to the user. Using this method, the code for our new server
can be written asfollows:

usi ng System
usi ng System W ndows. For 1rs;

nanespace MG eeting {
public class WndowsG eeting {

public void Geet() {
MessageBox. Show("Hel l o " + m user Nane) ;

Displaying the greeting using Mes sageBox isn't much of achdlenge. Let's write code to create our own window.
The god of our exerciseisto create adiaog box with agreeting label and a"Closg" button, as shown in Figure 2.1.
Figure 2.1. A simple dialog box.

N -0l

Hella Jay

LCloze

4

The .NET Framework provides aclass, For m(namespace Syst em W ndows. For ms) to represent awindow
displayed in an gpplication. This class can be used to create non-modd aswell as moda windows (e.g., adialog box).
The class provides many properties and methods to control various aspects of the window such as appearance, size,
and so on.

Typicdly, you extend the For mclassto customize it for your needs, so let's define anew cdlass that inherits from
For mclass. The code excerpt is shown here:

/1 Project WndowsG eeting

46

usi ng System W ndows. For ns;

public class WndowsGreeting : Form {

The .NET Framework provides the label contral in the form of the Label classand the button control in the form of
the But t on class. Both these classes are defined under the namespace Sy st em W ndows. For ns. Wewould
need to create an instance of each of these classes. The code excerpt is shown here:

public class WndowsG eeting : Form {
private Label m| abel;
private Button m btnC ose;

// Initialization in the constructor

public WndowsG eeting() {
m | abel = new Label ();

m bt nCl ose = new Button();

The controls need to be positioned and sized properly. The framework provides aclass Poi nt to specify alocaion
and aclass Si ze to specify asize. These classes are defined under the namespace Sy st em Dr awi ng. The

following code excerpt uses these classes to control the appearance of our controls.

m | abel . Locati on = new Point (16, 16);
m | abel . Si ze = new Si ze(136, 24);

m bt nCl ose. Locati on = new Poi nt (48, 50);
m bt nCl ose. Si ze = new Si ze(56, 24);

Thetext for the button control needs to be s&t:

m bt nCl ose. Text = "d ose";

We now need to add the logic to close the form when the user clicks the button control.

47

The button control exposes an event Cl i ¢k (you probably expected that) with a delegate of type Event Handl er .

Hereisits definition:
public del egate void Event Handl er (Coj ect sender, EventArgs e);
Flexible Event Handler

. The Event Handl er delegate takes two parameters. The first parameter specifies the sender

~ IF of the event. The second parameter can be used to pack any event-specific arguments. This
makes Event Handl er soflexiblethat dl the sandard eventsin the NET classlibrary use

it. In theory, one can write ageneric event handler that can accept virtudly any event raised by
the classlibrary.

Let'signore the parameters for the moment as they are of no current interest to us. Here is our code to handle the
button click, based on the Event Handl er definition:

void O oseButton_dick(Object sender, EventArgs e) {
this.Cose(); // close the form

Let's asociate this method with the button click event:
m bt nCl ose. d i ck += new Event Handl er (Cl oseButton_d i ck);

The controls have to be added to the form before they can be displayed. For mclass exposes a property called
Cont r ol s that can be used to add the contrals, as shown herel

this. Control s. Add(m | abel);
t his. Control s. Add(m bt nCK) ;

We now need to set the didog box window to areasonable sze:

this.dientSize = new Si ze(150, 90);

Findly, athough not needed for our demondration, we will add a small enhancement to our diaog box. We will let
the users press the Es ¢ key to close the didog box.™ The For mclass provides a property, Cancel But t on, that

can be set to a specific button, as shown here:
™ Those of us who prefer using the keyboard over the mouse appreciate this.

this. Cancel Button = m bt nC ose;

With this change, when the user pressssEsc, Cl oseBut t on_C i ck getsinvoked and the form closes.
We are done with the diadlog box initidization code. Here isthe initiaization code in its entirety:

public WndowsGeeting() {
/'l Create the | abel control and specify settings
m_| abel = new Label ();
m | abel . Locati on = new Poi nt (16, 16);
m | abel . Si ze = new Si ze(136, 24);
m | abel . Text ="";

/'l Create the button control and specify settings

m bt nCl ose = new Button();

m bt nCl ose. Locati on = new Poi nt (48, 50);

m bt nCl ose. Si ze = new Si ze(56, 24);

m bt nCl ose. Text = " ose";

m bt nCl ose. d i ck += new Event Handl er (C oseButton_d i ck);

/1 Add the controls to the dial og
this. Control s. Add(m | abel);
this. Control s. Add(m bt nC ose) ;

/1 Dialog settings
this.dientSize = new Si ze(150, 90);

/'l set ESC to work as cancel button
this. Cancel Button = m bt nd ose;

Thereisjust one more piece of business to be taken care of; we need away to pecify the user name for the greeting
to be displayed. Let's define a property on the class called User Name. All we need is a set accessor on this property.
The code excerpt is shown here:

public class WndowsG eeting : Form {
public String UserNane {

set {
m | abel . Text = "Hello " + val ue;

We are done. Compile and build the assembly. Cdl it W ndows G eet i ng. dl | . Hereisthe command line

csc.exe -t:library \
-r:System Wndows. Forns. dl | W ndowsG eeting. cs

Let's now write aclient to use this class. Here is our new code for the client:

usi ng System
usi ng MyGreeti ng;

cl ass MyApp

{
public static void Main() {

W ndowsG eeting dl g = new WndowsG eeting();
dl g. User Nane = "Jay";
dl g. Showhi al og() ;

Build this application using the following command line:
csc.exe -t:w nexe -r: WndowsG eeting.dll HelloUser.cs
Option ?TT>t:winexe tells the compiler to build a GUI gpplication.

Run this program. It should bring up aform similar to one shown in Figure 2.1. Click the Tl ose button (or press
Esc), and the form should disappear.

Interface-Based Programming

In the previous section, we developed a console-based server and a corresponding client. We then developed a
Windows-based server and a corresponding client. Why can't we write just one client that can pick up a pecified
server implementation during runtime? Well, we can. Let's see how.

For our experiment, we seeif there is any command-line parameter passed to our client program during execution. If
thereis any parameter present, we assume that the user intends to display a console greeting. If no parameters are
detected, we display a Windows greeting.

So far in our examples, the entry point of the program, Mai n, did not have any arguments. The common language
runtime accepts many overloaded method definitions for Mai n, which we examine in Chapter 4. Thereis one
overloaded definition of Mai n thet takes asingle argument. If this overloaded method is used instead, then the
common language runtime packages dl the command-line parameters as an array of strings and passesiit to the
function.

Hereisthe new implementation of Mai n for the dient program:

/1 Project MiltipleServers

50

public static void Main(String[] args) {
String userName = "Jay";

bool bConsol e = (args. Length >= 1);
if (bConsole) {
/1 consol e dial og
Consol eGreeti ng obj = new Consol eG eeting();
obj . User Nane = user Nane;
obj . Geet();
}else {
WndowsG eeting dlg = new WndowsG eeting();
dl g. User Nane = user Nane;
dl g. Showhi al og();

Looking at the code, there is a philosophical issue we need to address. Both Consol eGr eet i ng and

W ndows G eet i ng havethesamepurpose o display agreeting. However, one thing that stands out from the
code isthat thereis no consistency in the way they are used. For example, Consol eG eet i ng requires method
@ eet tobecdled, whereas W ndows G eet i ng requires method ShowDi al og to becaled. If in the future
you define another class that implements a newer greeting mechanism, it probably will define a different method
signature? to display the greeting.

@ The signature of a method is the combination of the name of the method, the parameters it has, and its

return type.

It would be nice to somehow formaize the behavior so that each class can implement this behavior in its own way but
the client getsto treet dl the classes in the same fashion. Fortunately, the common language runtime provides support
for formdizing behavior in an dbdraction cdled an interface.

Interfaces

Aninterfaceissmply a specid type that conssts of aset of methods. Unlike norma types, however, the methods are
al pure virtud; that is, they do not have any implementation. Any other class that wishes to expose the behavior
described by the interface can inherit from the interface and provide its own implementation. As amatter of fact, a
class can inherit from as many interfaces asit desires. This support by the common language runtime for multiple
interface inheritance more or less compensates for the single implementation inheritance restriction on aclass.

Note that an interface can dso define properties and indexers (after al, they dl map to methods anyway). Also, an
interface itsdf can inherit from one or more interfaces.

In C#, thekeyword i nt er f ace isused to define an interface. Using this keywaord, the interface to greet auser can
be defined as follows:

/1l Project Interfaces

51

/1 File Geeting.cs
usi ng System

nanespace MyGreeting {
public interface | Geeting {
String UserNane { set; }
void Geet();

Note that the interface name is prefixed with an | . Thisis aconvention that the programming community has adopted
to differentiate it from classes and other types.

Aswith classes, scoping an interface within a namespace is optiond. If not explicitly scoped, the interface belongs to
the global namespace.

Note that an interface can specify the type of accessor required on a property. Interface | G- eet i ng mandatesthat a
set accessor beimplemented on property User Nane.

Based on thisinterface, our Consol eG eet i ng class can be modified as follows:

public class ConsoleGeeting : IGeeting {
private String muserNaneg;

public String UserName {
set {
m user Nane = val ue;

public void Geet() {
Console. WiteLine("Hello " + muserNane);

Interfaces versus Abstract Classes

SERE The common language runtime (and therefore C#) aso defines the notion of abstract methods

— and abdtract classes. An abdtract method is equivaent to pure virtua method in C++; thet is, it
does not have an implementation. An abstract classis aclass that cannot be ingantiated. An
abstract class contains one or more abstract methods.

At firg glance, an abstract class looks very similar to an interface. However, there are subtle

52

differences between the two that you need to be aware of. First, athough you can derive your
dass from more than one interface, you cannot derive it from more than one abstract class.
Second, an abdtract class may implement some functiondity, whereas interfaces do not
implement any functiondity. Interfaces make you think in terms of interfaces ure protocols
to enforce black box communication between independent parties.

When designing your application, use interfaces to define interaction between different
components and use abstract classes to define hierarchical relationships.

Smilarly, our W ndows G eet i ng class can be redefined as follows:

public class WndowsGreeting : Form |Geeting {

public String UserNanme {
set {
m | abel . Text = "Hello " + val ue;

public void Geet() {
thi s. ShowDi al og();

Thefollowing dient-side code excerpt shows how to obtain an interface from a specific implementation:

public static | Greeting GetG eeting(bool bConsole) {
Obj ect obj ;
i f (bConsole) {
obj = new Consol eGeeting();
}else {
obj = new W ndowsG eeting():

}
return (1 Geeting) obj;

As can be seen from the code, obtaining the desired interface from an object is as smple as typecagting the object to
the interface.

Wheat if the object doesn't support the requested interface? In this case, the common language runtime raises an
exception of typel nval i dCast Except i on.

Remember that for more information on .NET defined types (eg., | nval i dCast Except i on), you canlook up
the SDK documentation.

Test an Object's Type

s Under CH#, there are two more methods of checking if an object supports an interface. The first

: method is by using the keyword as, as shown here;

| Greeting greet = obj as | Geeting
If vaidblegr eet isnot null, it implies thet the object supportsinterface| G eet i ng:

if (greet !'=null) {
/1 do sonething with greet

The second method is by using the keyword | s, as shown here;

if (obj is IGeeting) {
/1 do sonething with obj

Note that the keywordsas andi s are not just limited to interfaces; they can be used to check
if an object can be converted to any other type. Thisis different than casting in -that thereisno
exception thrown if the object is not competible with the specified type.

The dient-side main code can be rewritten as follows:

public static void Main(String[] args) {
String userNanme = "Jay";
bool bConsol e = (args. Length >= 1);
| Geeting greethj = Get G eeting(bConsol e);
greet bj . User Nane = user Nane;
greet bj . Geet();

As can be seen, once a specific implementation has been sdected, the dient can useiit in the same cong stent manner.

Interface-based programming drives down the separation of behavior from implementation and is an important
programming paradigm. It forces the clients to think in terms of interaction and not implementation. Get familiar with
this paradigm. The .NET dlasslibrary defines many interfaces that we use during the course of the book.

Using Interfaces or Classes?

o Those who have programmed in COM know thet there is no way for aclient to talk to a server

— | other than using the interfaces. .NET, however, offers dlass-based communication aswell as
interface-based communication. This raises an interesting question: What should the dlient use?
A class or an interface? Or, what should a server expose? Classes or interfaces?

Interfaces are good paradigms for exposing generic functiondity that can potentidly have
multiple implementations. If you think various implementations can be expressed in terms of
some generic functiondity, then interfaces make sense. For example, most collection classes
(eg., Array, ArrayLi st etc.) under NET provide a mechanism to iterate through each
itemn in the callection. This functiondity is nicely expressed through an interface called

I Enuner at or . Aswewill seelater in the book, .NET defines quite afew interfaces, each of

which express a different functionality.

Exposing a class makes senseif a single implementation can be reused. A good exampleisthe
Syst em W ndows. For s classthat we saw earlier. It captures most of the Windows GUI
functiondity in just one implementation. Developers can customize their user-interface

behavior by just extending this class.

Deployment

Windows users are aware that ingtalling an gpplication on Windows can be complicated. For example, an indalation
program may copy filesto various subdirectories and may update various registry settings. Backing up such an
gpplication or moving it to a different machine is not easy, as you have to hunt down al the files (oread over various
directories) aswdll asthe rdevant registry entries. Moreover, uninstaling the applications may leave somefiles or
regigry entries behind, making your machine very messy.

One of the gods of .NET deployment is to smplify ingalation.

In the smplest case, a stand-done .NET executable, when copied to a machine on which the NET Framework is
dready ingtaled, can smply be executed. No registry entries are changed. Moreover, Smply deleting the file removes
the application.

If an gpplication congsts of more than one assembly, smply copying dl the assemblies to a single directory is enough
to make the gpplication run. No modifications are needed to the registry. To uningtall the gpplication, just delete the
files. Thiskind of deployment is often referred to as XCOPY deployment.

Of course, ared gpplication most likely will be packaged using other mechanisms such as .cab files (used in Internet
downloads) or .ms files (used by the Windows Ingtaller service). However, there is till no need to modify registry
entries just to make the gpplication run. Creating shortcut links on users desktop or the Start menu may require
changes to some registry entries, but thisis more of aWindows issue and not specific to .NET deployment.

Assemblies that are deployed to the same directory as the gpplication are caled private assemblies, asthe assembly
files are not shared with any other gpplication (unless the other application is aso copied in the same directory, but

55

thisisrare). Private assemblies are abig win for trouble-free ingtallation. When the gpplication is run, the common
language runtime checks the locd directory first to load the required assembly. This means that the common language
runtime will not load a different assembly that just happens to have the same name, thus preventing administrative
problems.

Private assemblies need not dways be indaled in the same directory as the gpplication. For better organization, they
can beingdled in any subdirectory under the directory that contains the gpplication. In this case, however, NET
requires that a configuration file be supplied to indicate the path to pick the assemblies from.

The configuration fileis an XML file with aname that is the filename of the application executable with . Conf i g at
the end. For example, if the gpplication executablewere Hel | oUser . exe, the configuration filename would be
Hel | oUser . exe. Conf i g. Thefilemust beinstdled in the same directory as the application.

The configuration file provides asmple administrative control. Aswe will seein later chapters, there are many
settings, such asthose related to versioning and remoting, that are best decided by the user or administrator of the
goplication. Such settings can be specified in thisfile.

The setting that we are concerned with hereis cdled the Pr i vat ePat h seting. The following configuration shows
how the common language runtime can be asked to look for private assembliesin a subdirectory caled MyBi n
(Project | nt er f aces):

<?xm version="1.0"7?>
<confi guration>
<runti me>
<assenbl yBi ndi ng xm ns="urn: schemas-m crosoft-comasmv1l">
<probi ng privat ePat h="M/Bi n"/ >
</ assenbl yBi ndi ng>
</runtime>
</ configuration>

Private assemblies should be used whenever possible. However, there are times when an assembly hasto be ingtaled
such that it is shared with multiple gpplications. Things Sart getting a bit complicated in this case. In alater chapter,
we will look at how shared assemblies are ingtdled, locdly, as well as when downloaded from the Internet.

Diagnostics and Support

So far we have looked at developing and deploying .NET applications. Part of software development is also to specify
what the code is expected to do (by means of documentation) and to debug and verify that the code is working the
way you expect. The NET SDK provides many useful tools and mechanisms for these purposes. Let's take alook at
some of them.

Tracing

The simplest way to check the behavior of the code is to add some trace statements into the code. The NET
Framework provides a class Debug (namespace Syst em Di agnost i ¢s) that provides many useful datic
methods to instrument your code. For example, Debug. W i t e can be used to output atring, as shown in the

following code excerpt:

/'l Project Tracing

public static void Main() {
Debug. Wite("Debug: | amin nain");

Debug. Wi t e isaconditiond statement; it isincluded in the source code only if asymbol DEBUGs defined. With
the C# compiler, this can be done by specifying -d:DEBUG as a command-line parameter, as shown here:

csc.exe -t:exe -d: DEBUG - out: MyAppDebug. exe M/App. cs

The output of the Debug statement is captured by a BCL-defined static collection object, Debug. Li st ener s.By
defaullt, this collection object containsjust one listener, Def aul t Tr aceLi st ener . Thisdefault trace listener
outputs to the Windows system debugger (using Qut put DebugSt ri ng Windows AP). Most standard debuggers
such as the one that comes with Visua Studio .NET can catch this output. When a debug executable is run from

Visud Studio .NET, the trace messages can be seen in the Output window in Visua Studio .NET.

Al s Y ou can aso catch the output from Qut put DebugSt r i ng using the Debug Monitor
: (DbVon. exe), atoal that comes with the Windows Platform SDK. The source code
(DbVon. ¢) can be downloaded from [MS-90].

BesidesW i t e, class Debug provides many other ussful routinessuchasW i t eLi ne, Assert,
Wit eLi nel f,andsoon. Look into the SDK documentation for more details.

Symbol DEBUG s usad only for debug builds and should never be used with builds that will be shipped to the
customers. What if you wish to trace execution in a shipping product? The .NET Framework defines yet another class
Tr ace jus for thispurpose. Tr ace isidentica to Debug in most respects, except that it gets enabled when a
symbol TRACE is defined during compilation.

Debug Build Settings

N ¢ FOr debug builds, it isagood idea to define both DEBUG and TRACE symbols.

- -

- b

57

No matter which tracing class you use, you are not limited to use just the defaullt trace listener. Y ou can aways create
yourown Tr acelLi st ener derived classand add itto Debug. Li st ener s or Tr ace. Li st ener s. Asa
matter of fact, the framework defines two such classes, Text Wi t er Tr acelLi st ener and

Event LogTr acelLi st ener, tha you can use to customize tracing within your gpplication. The former class can
be used to redirect tracing to a stream class (such as afile) and the second one can be used to redirect tracing to the
Windows event log.

You can dso control the amount of tracing information by means of some switches. The SDK documentation explains
thisin detall.

Using the Debugger

The .NET SDK supplies a console-based tool (Cor Dbg. exe) and aWindows-based tool (DbgCl r . exe) to debug
an gpplication. However, the Visud Studio .NET debugger is much more powerful than either of these debuggers and
probably would remain the most popular choice of debugger.

No matter which debugger is used, the application being debugged has to be compiled such that it contains debugging
information (unless you are good at debugging in hex numbers). This can be done by using the - debug
command-line option on the compiler, as shown in the following example (Project Debuggi ng):

csc.exe -t:exe -debug -out: MAppDebug. exe M/App. cs
Option - debug doestwo things.

It creates a programmer's database (PDB) file that maps MSIL ingtructions to source code lines.

2. Credting just the PDB file is not enough. We aso need a mapping between the MSIL indructions and the
native code. Recdl that the native code is generated on the fly. The J'T compiler hasto be ingtructed to
create the mapping between native code and MSIL. Option - debug causesthisto happen by setting an
assembly-leve attributecdled J| TTr acki ng.

Notethat the JI TTr acki ng attribute gets set automatically if you run the program from within the debugger.
However, if you attach to an aready running process, and if this attribute was not set during compilation, then there is
no mapping back to MSIL ingtructions and therefore to the source code. In this case, the only code that you can see
from the debugger is the native language ingructions.

Torunaprogramusing Cor Dbg. exe, you can specify the executable name as a command-line parameter, as shown

here:
Cor Dbg. exe MyAppDebug. exe

Once you are in the debugger, you can set breakpoints, examine variables, execute the code to the next breskpoint,
and so on, pretty much what you would expect from a standard debugger.

58

Asabonus, the source code for Cor Dbg is supplied asan SDK sample. It is agood reference sample to get more
indght into how the common language runtime executes a program.

Dbgd r . exe isbased on work that was being done for the Visual Studio .NET debugger. Although not as powerful
as Visud Studio .NET debugger, it is till a decent GUI-based debugger.

Documentation

We dl agree that documenting code is asimportant as developing code, athough it is a tedious job.2 Fortunately, C#
provides a smple mechanism for the devel opers to document their code using XML. Structures, classes, interfaces,
methods, events, properties, and so on, can al be documented using the/ / /' commenting style followed by a
predefined XML tag. The following code excerpt demonstrates the use of some common tags to document classes and
methods (Project Documentation):

& Most developers | have worked with do not seem to like documenting code.

/1] <summary>This is ny main application class</sunmary>
/1] <remarks>

/1l This is where a | onger coment for ny class goes.
1] <lremarks>

cl ass MyApp

{

/1] <summary>
/11l This function greets the specified user
/11 </ summary>
[l <param nanme="user">The nane of the user</paranp
/1l <returns>Doesn't return any val ue</returns>
public static void Geet(String user) {

Console. WiteLine("Hello " + user);

/1l <summary>The mai n entry poi nt </ sunmary>
public static void Min()

{
M/App. Greet (" Jay");

Any vdid XML tag can be used for documentation. However, some commonly used tags are documented in the SDK
under C# Language Features.

The compiler can be directed, using -doc option, to process this source file and produce an XML documentation file.
Thefollowing command line resultsin producing MyDoc. xm as the documentation file.

csc. exe -out: M/App. exe MyApp. cs -doc: MyDoc. xni

59

The generated XML file can be run through a transformation mechanism that produces the output in the desired
format.

Summary

C# provides the flexibility of C++ and the smplicity of Visud Basic. It has many features that have aclosetieto
the NET Framework. It aso provides productivity features such as automated documentation.

The heart of the NET Framework is the common language runtime, the runtime environment that manages the
execution of MSIL code. Any code that targets the common language runtime is called managed code; it benefits from
many features offered by the common language runtime, such as automatic garbage collection, JT compilation of
MSIL to native code, and cross-language operability. The common language runtime also provides a uniform
mechanism for error handling by way of exceptions.

The .NET Framework defines many base datatypes such as Syst em St ri ng, Syst em | nt 32, and so on. These
types are implemented in the BCL,, a framework-supplied library. The BCL isaset of assamblies, MSCor Li b. dl |

being one example.
Under .NET, al types get derived from Syst em Obj ect , either directly or indirectly.

The common language runtime supports the class-based as well asthe interface-based client erver programming
mode.

An assembly is aunit of deployment. It can be thought of asalogica DLL or EXE file that exposes types.
There are three types of assemblies library assembly, console-based assembly, and Windows-based (GUI) assembly.

The .NET Framework provides many dasses to smplify developing console-based as well as GUI applications. It dso
provides classes and tools to help diagnose problems.

By thistime, readers should be reasonably familiar with C#, the common programming paradigms under .NET, and
many key aspects of the NET Framework. The framework, and therefore C#, offers many other features such as
attribute-based programming and interoperability with COM+ components and Win32 APIs. In the coming chapters,
we unfold many such features.

References

[Tru-00] Trupin, Joshua, " C# Offers the Power of C++ and Smplicity of Visual Basic," MSDN Magazine, September
2000. msdn.mi crosoft.com/msdnmagy/issues/0900/csharp/csharp.asp

60

[MS-90] Microsoft, "DBMON: Implements a Debug Monitor," Microsoft SDK samples, 1990.
msdn.mi crosoft.comvlibrary/devprods/ivst/visua c/vesampl e/vesmpdbmon.htm

[Gun-00] Gunnerson, Eric, A Programmer's Introduction to C#, Associate Press, September 2000.

[Lib-01] Liberty, Jesse, "What You Need to Know to Move From C++ to C#," MSDN Magazne, July 2001.

msdn.mi crosoft.com/msdnmag/i ssues/01/07/ctocsharp/ctocsharp.asp

[Misc-00] Hewlett-Packard, Intel Corporation and Microsoft, "ECMA Standardization," October 2000.
msdn.microsoft.com/net/ecma

61

Chapter 3. Assemblies

In the previous chapter, we learned that the executables generated by the .NET compilers are called assemblies.
Under .NET, assemblies form the fundamenta building block of program components. In defining the formeat for the
assembly, .NET had many gods. These godsincluded interoperability among different programming languages,
side-by-sde execution of multiple versons of the same assembly, performance enhancements, and so on. In this
chapter, we take an in-depth look at the assemblies and examine how these goals were achieved. By the end of the
chapter, you will have agood knowledge of the assembly internas and the packaging and deployment model

under .NET.

Assemblies

Assemblies are the building blocks of .NET Framewaork applications. They form the smalest unit of code ditribution
inthe NET Framework.

An assembly congists of one or more Win32 Portable Executable (PE) files. A Win32 PE fileis built in afile format
for executables that is common across dl flavors of Windows. More information about PE file format (and the newer
enhancementsto it for 64-bit Windows) can be found in [Fie-02]. Each PE file within the assembly isreferred to asa

module.

An assambly can aso contain auxiliary files such as HTML files, read-mefiles, and so on. Although an assembly may
consst of multiple modules and auxiliary files, the assembly is named, versoned, and deployed as an atomic unit. For
our current discussion, it is eesier to view an assembly as asingle executablefile. This by far is the most common case
for assemblies.

The .NET compilers can build an assembly either as alibrary file (with atypicd filenameextenson . dl |) or a
stand-alone executable (extension . exe) file. Table 3.1 shows the compiler switches available with C# compiler (and
most other .NET compilers) to build different types of assemblies.

Table 3.1. Assembly Type Compiler Switches

Switch Assembly Type

-t:library Library

-1:exe Console user interface (CUI) executable
-t:w nexe GUI executable

An EXE-based assembly can be executed just as a standard stand-alone Win32 executable, for example, by entering
the filename from a console window or by double-dicking the filename from Windows Explorer. A DLL-based
assembly, on the other hand, is required to be loaded dynamicaly, ether implicitly by the common language runtime
or explicitly in your code.

62

To emulate the behavior of astand-aone Win32 executable, an EXE-based assembly contains two additiona pieces
of informetion:

1. It containsasmal piece of bootstrapping code that pointsto Cor ExeMai n, an APl exported by the
common language runtime. This function contains the logic to host the common language runtime. So, when
the gpplication is executed, the control is transferred to Cor ExeVai n, which in turn loads the common
language runtime into the process and transfers control over toit.

2. It definesan entry point that the common language runtime can start executing code from. When we write
codein ahigher level language such as C#, the compiler automaticaly assumes that the entry point is a gatic
method named Mai n.

Other than these two differences, both types of assemblies are treated similarly by the runtime. For example, an
EXE-based assembly can just as easily be loaded dynamicaly, asillustrated in the following code excerpt:

/1 Project LoadAssenbly

public static void Main(String[] args) {
Assenbly a = Assenbl y. LoadFr on(" Consol eG eet i ng. exe");
Consol e. Wit eLi ne(a. Ful | Nane) ;

The NET Framework definesaclass Assenbl y (namespace Syst em Ref | ect i on) to encapsulate an
assambly. This class defines a static method, LoadFr om to load an assembly given its filename. The preceding code
loads an assembly named Consol eG eet i ng. exe and outputs the display name of the assembly (property

Ful | Nare). The display name of an assembly is the string representation of the identity of the assembly. The output
from the program is shown here:

Consol eG eeting, Version=1.2.3.4, Culture=neutral, PublicKeyToken=null

Let's see how we can interpret thisidentity of the assembly.

Assembly Identification

An assembly is uniquely identified by four partsits name, version, culture, and public key. The assembly resolver, a
part of the common language run-time that is responsible for locating assemblies, uses this four-part information to
locate the correct assembly.

Name

The Nane part of the assembly name typicaly corresponds to the underlying filename (without the extension) of the

asembly.

Strictly spesking, the Nanme of the assembly need not match the underlying filename. However, keeping the two

names in sync makes the job of the assembly resolver (and humans) essier.

63

Version

Each assembly has afour-part version number of theform Vaj or . M nor . Bui | d. Revi si on. Thisverson
number is set a build time using an assembly-leve atribute (attributes provide extrainformation on parts of your
code) caled Assenbl yVer si onAt t ri but e (namespace Syst em Ref | ect i on), asillustrated here:

/'l File Consol eGeeting.cs
[assenbl y: Assenbl yVersionAttribute("1.2.3.4")]

If the verson number is not explicitly set on an assembly, the default vaue is 0.0.0.0.

When specifying the verson number, only the Maj or field is mandatory. Any other missing fields are assumed to be
zero. For example, specifying averson string of 1.2 resultsin an actud version value of 1.2.0.0.

Using Visual Studio .NET IDE

o If you create your .NET project using the Visua Studio .NET Integrated Devel opment

=—— | Environment (IDE), the IDE automatically generates Assenbl yVer si onAt t ri but e,
and other related attributes, storesthem in afile named Assenbl yI nf 0. cs, and addsthe
fileto the project.

Itisaso possbleto let the compiler generate the build and the revision number. Thisis done by replacing the build
and therevison fidd by asingle asterick, asin 1. 2. * . Inthis case, the compiler generates the build number asthe
number of days that have elgpsed since January 1, 2000 and the revision number as half the number of seconds since
midnight.

Youcandso use* jud for the revison number, but not for the build number. For example, 1. 2. 3. * islegd but
1.2.*. 3isillegd.

Culture

A culture, in smple terms, identifies a gpecific language and optionaly a sublanguage (eg., Augtrdian English).
Associated with the language (and the sublanguage) dso are some culture-specific operations such as currency,
number, and date formatting.

Each culture isidentified by aname. The naming scheme is based on Request for Comments (RFC) 1766 [Alv-95].
For example, U.S. Englishis"en-US" and Spanish from Spainis"es-ES."

Culture settings are typically used to build resource-only assemblies, commonly known as satellite assemblies. The
main idea behind building satdllite assembliesis that an application can load a resource from the appropriate satdlite
assembly, based on the current culture setting of the application.

The culture setting is assigned to a satdllite assembly at the time of building the assembly.

Wewill look into building satdllite assembliesin alater section. For now, it isimportant to note that the assemblies
containing the code are marked as culture-neutra uch an assembly can contain resources that can run under any
culture settings.

Public Key

The .NET Framework provides a mechanism to guarantee that an assembly has not been tampered with, perhaps by a
malicious hacker, once the assembly has been crested. Thisis done by using standard public-key cryptographic
techniques the assembly is Signed with a cryptographic public private key pair. Such an assembly is called
strong-named assembly. Assemblies thet are not strong-named are referred to as simple assemblies.

Strong-named assemblies are also useful to ensure correct binding between an application and its referenced
assemblies. For each strong-named assembly that the application references (or loads dynamicaly), the common
language runtime tries to bind the assembly that has the exact name, version, culture, and public key. The importance
of thiswill become evident when we discussthe "DLL hell" problem later in the chapter.

A Restriction on Strong-Named Assemblies

— When you use a strong-named assembly, you get certain benefits such as versioning and

—_— integrity check. If a strong-named assembly in turn references a smple- named assembly, these
benefits are lost. Therefore, the framework prohibits a strong-named assembly from
referencing Imple-named assemblies.

To build astrong-named assembly, you must first obtain apublic rivate key par. The framework provides a utility
cdled the Strong Name tool (sn. exe) tha can be used to generate the key pair. The following command line, for

example, generates akey pair and storesitin MyKey. snk:
sn. exe M/Key. snk

Switch - k isused to generate akey pair and store it in the specified file (.snk isthetypicd extension for such files).
The public key is made of a 128-byte blob with 32 bytes of header information. The private key is made of a 436-byte
blob. This brings the Sze of the generated public rivate key pair file to 596 bytes.

An assembly can be signed with the strong-named key file by using an attribute,
Assenbl yKeyFi | eAtt ri but e (namespace Syst em Ref | ect i on), inany oneof the sourcefiles. The
following source line, for example, specifies that the assembly be sgned usng MyKey . snk:

[assenbl y: Assenbl yKeyFil eAttri bute("M/Key. snk")]
When this attribute is specified, the compiler takes care of signing the resulting assembly with the specified filename.

Project Shar edAssenbl y on the companion Web site demonstrates building shared assemblies.

65

Note that there are also some other ways to sign an assembly. For example, the NET Framework provides atool
called the Assembly Linker (al . exe) that can be used to sign the assembly. The tool uses a command-line switch

- keyfi | e for this purpose.

Building from VS .NET and Command Line

::__1 If acomplete path to the key fileis not specified to Assenbl yKeyFi | e atribute, the build

__.-"':___ process expects thefile to be in a directory relative to the directory from which the build was
initiated. Almost al the projects on the companion Web site that create strong-named
asmblies have the key filein the output directory (\ Bi n). This directory aso containsthe
meakefile for command line builds. In order to be able to build the assembliesfrom VS .NET as
well as from the command line makefile, the source code defines the key file attribute as
follows

#i f CVDLI NE

[assenbly: Assenbl yKeyFil e(" MyKey. snk")]

#el se

[assenbly: Assenbl yKeyFil e(@ .\ Bi n\ MyKey. snk")]
#endi f

The makefile defines the symbol CMDLINE, as shown in the following example:

csc. exe -define: CMDLINE ...

Using a conditiond directive in the source code for the key file attribute to achieve builds from
VS .NET aswel asfrom the command line is a common programming technique under .NET.
Y ou will seethis technique being used in many .NET SDK samples.

Public keys are represented by alarge number of bytes (a 128-byte blob with 32 bytes of header information). To
conserve storage space, the framework hashes the public key and takes the last 8 bytes of the hashed value. This
reduced public key vaue, dso known as the public key token, has been determined to be datisticaly unique.

Obtaining the Public Key Token

N To get the public key token from a strong-named assembly, run sn. exe inacommand

i : window with the- T command-line switch, as shown here:

sn.exe -T Consol eGeeting.dl|l

usngsn. exe - Tisdsoagood way to check if an assembly is strong-named.

Note that the command-line switch specified is uppercase T. Do not make the mistake of using
t (lowercase). It resultsin displaying abogus public key token. This switch is meant to be

specified onafile that contains only the public key (as opposed to the public rivate key pair).

The combination of the name, verson, and culture, dong with the public key (or its token) creates a unique identity
for an assembly. Assemblies with the same strong name are expected to beidentical. It isimpossible for a hacker to
create anew assembly with exactly the same name and the same public key as your assembly. A strong name aso
ensures that no one else can produce a subseguent version of your assembly (as long as the cryptographic key fileis
not leaked out).

Note that an assembly that is not cryptographicaly signed has a public key token vaueof nul | , aswe saw inthe
output of the last example that we ran.

The common language runtime defines a standard format to represent the four parts as astring. This string
representation is caled the display name of the assembly. Its format is shown here:

Name <, Version=val ue> <, Cul ture=val ue> <, Publ i cKeyToken=val ue>

Although an assembly can be loaded by using its filename, as we saw earlier, amore common techniqueis to load the
assmbly by means of its display name. Thisis done using asaic method Assenbl y. Load, asillusraed in the

fallowing code:

/1 Project LoadAssenbly

public static void Main(String[] args) {

String nane =

"Consol eGeeting, Version=1.2.3.4, Culture=neutral,
Publ i cKeyToken=nul | ";

Assenbly b = Assenbl y. Load(nhane) ;

Method Assenbl y. Load causes the resolver to look into the application directory (and some other subdirectories
of the gpplication). Only the Nanme property of the assembly name is mandatory. All other parts are optiona. Here are

some examples of identifying an assembly:

Consol eG eeting, Version=1. 2. 3.4, Cul ture="",
Publ i cKeyToken=4028b28alc16b46e
Consol eG eeting, Version=1. 2. 3. 4, Cul ture=""
Consol eG eet i ng, Versi on=1. 2. 3. 4
Consol eG eeti ng
Consol eG eeti ng, PublicKeyToken=4028b28alcl6b46e

67

Note thet there is adifference between Cul t ur e=neutral andCul t ur e="" or omitiingthe Cul t ur e
keyword atogether. In the first case, the assembly resolver looks for a culture-neutral assembly. In the second case,
the resolver matchesany Cul t ur e settings.

A similar difference exists between Publ i cKeyToken=nul | andno Publ i cKeyToken keyword. Thefirst
case indicates that an assembly to be loaded does not have any public key. In the second case, the resolver matches
any Publ i cKeyToken sting.

Hereis an example of loading an assembly by using just the Nane fidd:
/1 Project LoadAssenbly
public static void Main(String[] args) {

String name = "Consol eG eeting";
Assenbly ¢ = Assenbl y. Load(hane) ;

Note that the Nane of the assembly does not contain any extension. The assembly resolver automatically gppends an
extension to the name. In the preceding case, the resolver first triesto load Consol eG eet i ng. dl | ,faling
whichittriestoload Consol eG eet i ng. exe.

If the resolver cannot locate an assembly, it throws a standard exception of type
System | O Fi | eNot FoundExcepti on

Anatomy of an Assembly
Figure 3.1 shows the mgjor parts of an assembly.

Figure 3.1. Parts of an assembly.

MODULE

Metadata
Manifest
IL Code

Resources

Let'slook at each of these partsin detail.

Modules

68

Technically, an assambly is not limited to just one PE file; it may contain more than one PE file, each referred to asa
module.

A moduleis uniquely identified by a GUID cdled the module version ID (MVID). Thisextraleve of indirection
makes it possible to change the module filename while keeping arecord of the origind filename. The MVID is
autometically generated by the compiler.

It should be noted that the most common case for an assembly isto contain just asingle module. In this case, the
module and the assembly are one and the same.

Building multimodule assemblies is covered under advanced topics later in the chapter.
Metadata
Condder thefollowing smpleHel | 0 User application, taken from the previous chapter:

/1 Project HelloUser

class MyApp

{
public static void Main() {

System String userNane = "Jay";
System Consol e. WiteLine("Hello " + userNane);

When this code is compiled, how does the compiler know that there exist classes cdled Syst em St ri ng and
Syst em Consol e, andthat Syst em Consol e providesagatic method caled W i t eLi ne that takesa
Syst em St ri ng type parameter?

Recall from the previous chapter that we had to reference assembly MSCor Li b. dl | while compiling this
gpplication. For your convenience, the command line is shown here once again:

csc.exe -t:exe -out:HelloUser.exe -r: MsSCorLib.dl | HelloUser.cs

Asyou might have guessed, the information on the available dasses and methods is coming from MSCor Li b. dl | .

When a.NET compiler processes the source code and generates the module, not only does it generate the MSIL code,
but it aso generates the information about every type the source code contains. Thisinformation is referred to asthe
metadata (data about data). The metadatais necessary for the common language runtime to provide managed services
to the code while it executes.

The metadata is stored in a binary form within the module. All .NET-compliant compilers are required to generate full
metadata information about every class type in the compiled source code file. Among other things, this metadata
contains a declaration for each type, the base class and the interfaces the type inherits from, the name and type
(methods, properties, events, and fields) of dl its members, and the signature of each of the methods.

69

Armed with the metadata information, the compiler can now verify if a class being accessed in the source codeis
present in the referenced assemblies and whether or not the parameters being passed to a method match the signature
of the method.

Metadata versus Type Libraries

— Readers who are familiar with COM may notice the conceptua similarity between the

— metadata and COM technologies such as type-libraries and IDL files. The important thing to
note is that the metadatais far more complete and is dways embedded in the same executable
asthe code. A type library, for example, need not aways be embedded with the executable.

The fact that the metadatais embedded in the assembly makes for another interesting possibility: A client can
explicitly load an assembly during runtime, instantiate a class stored in the assembly, and invoke amethod on the
instance. Such late-bound method invocation capability is provided by a.NET Framework subsystem called
Reflection. We will see some examples of Reflection under advanced topics later in the chapter. Javalanguage users
may be aware that Java provides asmilar functiondity.

Viewing the Metadata

The .NET Framework provides atool caled the IL Disassembler (i | dasm exe) to disassemble a .NET module.
This disassembler not only shows the MSIL code in the module but also lets you examine the embedded metadata.

Checking if a File Is a .NET Assembly

e Hereisaquick way to check if an EXE or DLL fileisan assembly. Runi | dasm exe onthe
:file If thefileis not avdid assembly file i | dasm exe displays an error message.

Let'srunthe IL Dissssembleron Hel | oUser . exe. Hereisthe command line:
il dasm exe Hel | oUser. exe
Hereisthe partia output from i | dasm exe:

.assenbly extern nscorlib

{
. publ i ckeyt oken = (B7 7A 5C 56 19 34 EO 89)
.ver 1:0:3300:0

70

.modul e Hel | oUser. exe
/1 MWD {90A8865C 4C5F- 477D ABCA- 4D45A1CE9B65}

.class private auto ansi beforefieldinit MApp
extends [nscorlib] System oj ect

. met hod public hidebysig static void Min() cil managed
{

} /1 end of nethod MyApp:: Main

. met hod public hi debysi g speci al nane rtspeci al nane
i nstance void .ctor() cil nmanaged

{

} /] end of nethod MyApp::.ctor
} /1 end of class M/App

Ascan beseen, Hel | oUser . exe implements My App, aprivate classthat isinherited from Syst em Cbj ect , a
class defined in the BCL. Recdl from the previous chapter that every type under .NET is ultimately derived from
System Obj ect (wecover Syst em Obj ect inmore detail in the next chapter). Furthermore, My App defines
apublic method Mai n and a public class constructor (Ct or). The signature of the method Vi n indicates that it
takes no parameters and hasavoi d return type.

Class My App is marked with attributes such asaut o, ansi , bef or ef i el di ni t, and so on. The SDK
documentation explains these attributes under TypeAt t r i but es enumeration. Likewise, method attributes such as
hi debysi g, speci al nane, and so on, can be found under Met hodAt t r i but es enumeration in the SDK
documentation. It is not important to fully understand these attributes. We discuss them only on a need-to-know basis.

Y ou may be wondering where the constructor code came from, even though My App doesn't define one. It just so
happens that the C# compiler generates a default constructor if oneis not explicitly defined. Y ou can easily guess that
the default constructor simply invokes the constructor for the base class, Syst em (bj ect .

Y ou can also see from the output that Hel | oUser . exe references an assembly named nscor | i b version
1.0.3300.0. Asan exercise, youcanrun i | dasmon MsCor Li b. dI | to verify thet there exist classes caled
System String andSyst em Consol e, andthat Syst em Consol e provides a static method called
Wit eLi ne that takesaSyst em St ri ng type parameter.

Disassembler for Advanced Users

SERE The IL Disassembler provides an undocumented command-line switch - adv that makesit run

— in an advanced mode. In this mode, the Disassembler provides some additiona metadata
information about the disassembled file. For more information, typei | dasm exe - adv - ?
on the command line.

71

At this point, it is worth mentioning that atype isimplicitly identified by the assembly it is defined in. For example, if
you define apublic dass Foo in two different assemblies, they are trested as two different types, even though they
share the same name. Hopefully, by scoping them in a different namespace, you can avoid any naming conflicts.

A namespace, on the other hand, can span multiple assemblies. However, it isimportant to keep in mind that if two
assemblies define a type with the same name and the same namespace, the runtime il treats them as two different
types. A typeis dways scoped within the assembly it is defined in.

Extending the Metadata ttributes

An important aspect of the metadata under .NET isthat it isfully extensible. Developers can add extrainformation on
various parts of the code using attributes. Attributes can be applied to classes, structs, events, delegates, member
fidds, condructors, methods, method parameters, return vaues, and even assemblies. Unlike comments, which get
stripped off when the code is compiled, compilers store the attributes as part of the metadata. They can later be
examined ether by the common language runtime or whoever dse isinterested, using Reflection AP!.

Attributes provide aflexible way to extend the behavior of a program entity. Earlier, we saw how attributes can be
used to specify the verson number on an assembly. As we go through the rest of the book, you will see that
attribute-based programming is quite pervasive under the .NET Framework. The usefulness of attributesis limited

only by your imegination.
Manifest

The manifest isapart of the assembly that stores some record-keeping information pertaining to the module. This
information includes, among other things, the MVID and the list of referenced assemblies.

Assembly Paths

_.....1 Note that the manifest does not store the file path of the referenced assemblies, just their

— | display names. It isthe respongbility of the assembly resolver to locate the referenced
assamblies when the application is run.

Technicaly, the manifest isa part of the metadata. However, metadata generdly is used to refer to type metadata, not
to manifest metadata.

It isrdlevant to understand the ditinction between the assembly manifest and the module manifest. Each module
within an assembly contains the manifest. However, there is one module within the assembly with a manifest that
contains some extra information pertaining to the assembly as awhole. The extrainformation includes, anong other
things, the identity of the assembly and the ligt of files that condtitute the assembly. The moduleis called the prime

72

module and the manifest it storesis referred to as the assembly manifest. In generd, unless explicitly stated, a
manifest refers to the assembly manifest.

Resources

Generdly, it is not agood ideato hard-code strings in the source code. Storing stringsin a separate file makesiit easy
to modify the strings without modifying the source code.

The .NET Framework makes it possible to embed resources such as strings and images stored in externd filesinto an
assembly. The resources can then be loaded programmatically usng aBCL class Resour ceanager (namespace

Syst em Resour ces).

It should be noted that when dedling with localized resources (i.e., resources dealing with a specific culture), it is
better to store them in a satdlite assembly. We look a storing resources in an assembly as well as creeting satdlite

assemblies later in the chapter.

Shared Assemblies

Assemblies frequently reference other assemblies. Recall from the previous chapter that the references can be
specified either by using - r switch on the C# compiler or by using aresponse file,

An assembly can execute only if the assembly resolver is able to locate the referenced assemblies. One way to ensure
thisisto deploy dl the referenced assembliesin the same directory asthat of the main gpplication or a subdirectory
under the gpplication’s directory, as we saw in the previous chapter. In this case, the referenced assemblies are cdled
private assemblies asthey are "private" to the gpplication using them.

Private assemblies are good if there is only one application consuming them, and they are preferred. There are times,
however, when you wish to share an assembly with multiple gpplications. A good example of such a shared assembly
isMsCor Li b. dlI | ;itisused by multiple applications. Shared assemblies are typicaly created by one company and

used by other companies.

Obvioudy, a shared assembly has to be ingtaled in a common place such that it is accessible to other gpplications.
Under .NET, this shared areais caled the Globa Assembly Cache (GAC).

The GAC is present on each machine that hasthe NET Framework ingtalled and acts as a machine-wide code cache.
Itislocated inthe<wi ndi r >\ assenbl y subdirectory where <wi ndi r > isthe Windows directory (eg.,
C.\ W ndows).

A region of the GAC is used to store assemblies downloaded over the Internet or intranet. Thisregion is caled the
download cache. Thereis one download cache per user.

To add an assembly to the GAC, the NET Framework provides a utility caled the GAC tool (gacuti | . exe). To
add Consol eG eet i ng. dl | from our previous chapter to the GAC, for example, the following commend line
can be used:

73

gacutil . exe Consol eG eeting. dl |

Switch - i indicates that the specified assembly should be added to the GAC. For amulltifile assembly, the prime
module (the module containing the assembly's manifest) must be specified as the parameter.

Note that you need adminigtrative privilegesto ingal an assembly in the GAC.

Choose Your Installer Wisely

e XCOPY inddlation works very wdl for smple applications that use just the private

g : assemblies. However, the mechanism is not suitable if you wish to ingtdl assembliesinto the
GAC or perform some specid operations, such as running an assembly as a service.

On acustomer's machine, the preferred way of ingaling assembliesin the GAC isby using an
ingdler that is designed to work with the GAC. Windows Ingdler 2.0 is one such ingtdler.

Table 3.2 ligts important switches on the GAC tool. Check the SDK documentation for acompletelist.

Table 3.2. GAC Tool Switches

Switch Description

-1 List assemblies in the GAC

-u Uninstall an assembly from the GAC
-1 dl List assemblies in the download cache for the current user
- cdl Clear the download cache for the current user

There is one more way to view and manipulate the contents of the GAC, using the Windows Explorer. The NET
Framework provides a Windows shell extension caled the Assembly Cache Viewer (Shf usi on. dl |) for this
purpose. For example, to view the contents of the GAC, you just have to navigate to the<wi ndi r >\ assenbl y
subdirectory from Windows Explorer. A sngpshot of the GAC from the viewer is shown in Figure 3.2.

Figure 3.2. Global Assembly Cache.

74

W& assembly EI@|

Fle Ed% \View Favorites Tooks Help i
Address |) CAWINDOWS) assembly i . (0
Global Assembly Name + Type Version Culkure Public Key Token A
:ﬁl mscorfib Mative Images 1.0,3300.0 b77ascsa1934e0589
BIMSDATASRC 7.0,3300.0 bOIFSF7FL 15034
sBIMSDOSLMP 7.0,3300,0 bO3FSF7F1 1d50a3a
:EIMsD0SP 7,0,3300,0 BOIFSF7F1 15034
BYOffice 7.0.3300.,0 bO3FSF7F1 1d50a3a
EJRegrode 1.0,3300.0 bO3FSF7F1 1050433
:#Y50apSudsCode 1.0,3300.0 bO3FSF7F1 1d50a3a
s&Ystdole 7.0.3300.0 bO3FSFIFL 1dS0a3a
:ﬁl Svshen MNative Images 1.0.3300.0 b77a5c5619342089
1B System 1.0,5300.0 77550561 9342059
«EI5ystem, Configur stion, Irstal 1.0,3300.0 BOSFSF7FL 1450838
B System. Data 1.0,3300.,0 b77350561 5342059
:gsmm.oew Native Images 1.0,3300.0 BOIFSFIFI1dS0a3a o

To add an assembly to the GAC, you can just drag and drop the assembly file to this directory. To delete an assembly,

select its name in the Explorer and press delete.

Note that the download cache for the current user can be found under <wi ndi r >\ assenbl y\ Downl oad
subdirectory.

Viewing Raw GAC

e When the assembly isindaled in the GAC, a unique subdirectory is created and dl the files of

g : the assembly are copied into the subdirectory. Y ou cannot see this subdirectory from Windows
Explorer (because of the Window shell extension). However, you can open a console window

and navigate to the GAC directory to seeits contentsin raw form.

Thereis an important security issue to be considered when ingtalling shared assemblies. As ashared assembly can
potentidly be used by many gpplications, it isimportant to ensure that the assembly is not tampered with after it is
created. By maicioudy tampering the assembly, a hacker can cause subgtantial damage, epecidly if the assembly

gets executed in a privileged account. Therefore, NET mandates that only strong-named assemblies can be ingaled

inthe GAC.

Ealier, | mentioned that to load an assembly programmaticaly, only the filename field of itsidentity isamug;, the

other fields are optiona. However, the preferred way to load an assembly from the GAC isto provide afull reference

(eg., the complete identity string), asillustrated in the following code. Here, we are trying to load aruntime ingaled
assembly, Syst em W ndows. For s, from the GAC:

/1 Project LoadAssenbly

75

name = @ Syst em W ndows. For ns, Version=1.0.3300.0,
Cul ture=neutral, PublicKeyToken=b77a5c561934e089";

Assenbly e = Assenbly. Load(nane);

Consol e. Wit eLi ne(e. Ful | Nane) ;

For partia references, method Assenbl y. Load does not even bother to look into the GAC. The only exception to
thisistheassembly Ms Cor Li b. dl | , which does not require afull reference. The assembly resolver gives specid

trestment to this assembly and lets you locate it with just the namefidld of the identification.

If you wish the assembly resolver to consder looking into the GAC aswell as application-specific directories, then
you can use another method, Assenbl y. LoadW t hPar t i al Nane, asshown in the following example:

/1 Load with partial reference fromthe GAC

name = @ System W ndows. Forns";

Assenbly a6 = Assenbly. LoadWt hParti al Nane(nane) ;
Consol e. Wit eLi ne(a6. Ful | Nane) ;

The End of DLL Hell

Windows users have probably experienced the problem of ingtaling a new application that suddenly bresks some
other previoudy instaled application(s) on the machine. This usudly happens when the gpplications sharea DLL and
the newer version of the DLL is not competible with previoudy installed applications. This problem is referred to as
DLL hdl.

NET diminatesthisDLL hell problem once and for al. The crux of the DLL hel problem isthet the newer verson
of the DLL replaced the exigting version of the DLL, but this newer verson is not fully compatible with previoudy
ingtalled gpplications, thus bresking those gpplications.

NET makesit possible for multiple versions of a shared assembly to coexist on the same machine. To ingtal anewer

verson of an assembly, just add it to the GAC. The GAC will store the older and newer versions. From GAC's point
of view, these are two different assemblies, astheir strong names do not match (because of the version number). Asa
matter of fact, as the GAC indexes an assembly by the strong name, it is entirdly possible to have two assemblies with
the same name, public key, and version, but different culture settings.

We dready know that when an application is executed, for each strong-named assembly the application references,
the assembly resolver tries to bind with the exact version of the assembly that the gpplication was built with. Asa
result, if anewer verson of a shared assembly isingdled on the machine, the previous ingtalled application can
continue to use the older version of the assembly, effectively diminating the DLL hell problem.

Although the default behavior of the runtimeisto find an exact match on the version number of the strong-named
asmblies, it is possble to customize this behavior by means of configuration files. This gives the administrators a
chance to use the older gpplications with the newer version of the shared assemblies and, if things don't work as
expected, revert back to the older version.

76

Let's see how the assembly binding behavior can be customized using the configuration files

Configuration Files

Assembly binding behavior can be configured based on three XM L-based files: the gpplication configuration file, the
publisher policy configuration file, and the machine configuration file. These files follow the same syntax and provide
information such as binding redirects and the location of the code.

Using afile-based configuration mechanism gives tremendous flexibility in terms of customizing an gpplication's or

assembly's behavior.
Let'stake alook at each of the configuration files.

Application Configuration File

An gpplication configuration file contains settings specific to an gpplication. The name and location of the application
configuration file depends on the gpplication's host.

Executabl e-hosted application: These applications generdly havean . exe filename extension and can be
run, for example, by double-clicking them in the Explorer window. For such an gpplication, the name of the
configuration file is the name of the gpplication witha. conf i g extension. For example, the configuration
filefor My App. exe must be named My App. exe. conf i g (the nameis case-insengtive). The
configuration file should stay in the same directory as that of the gpplication.

ASP.NET-hosted application: Thesefilesare named Veb. conf i g. Thesefiles can be stored in either the
gpplication's root directory or any of its subdirectories. Configuration filesin ASP.NET inherit the settings

of configuration filesin the Uniform Resource Locator (URL) path. For example, if the application islocated
at www.mycompany.convabc, then the ASP.NET pages a www.mycompany.com/abc/def/ looks at the
configuration settingsof abc aswell asabc/ def directories.

The configuration information is stored in text filesas XML files. The root eement of the configuration fileis
<confi gur ati on>. At the next level, configuration settings are grouped by their purpose. For example,
configuration settings related to the common language runtime are stored under the <r unt i ne> dement, as

illustrated in the following code:

<?xm version="1.0"7?>
<confi guration>
<runti me>
<assenbl yBi ndi ng xm ns="urn: schemas-m crosoft-comasmv1l">
<probi ng privat ePat h="M/Bi n"/ >
</ assenbl yBi ndi ng>
</runtime>
</ configuration>

77

We came across this example in Chapter 2. The pr i vat ePat h entry here informs the common language runtime to
indude My Bi n in the search path for locating assemblies for the application. Here, | show you its usage for two

frequently used tasks:

1. Redirect the runtime to use a different assembly version.
2. Ask the runtime to download an assembly over the network.

Binding Redirection

Inour earlier Hel | oUser example, Hel | oUser . exe referencesassembly Consol eGreet i ng. dl | verdon
1.2.34. Let'ssay Consol eG eet i ng. dl | was subsequently upgraded to version 1.2.3.5 (and the old version
removed from the system). If Hel | oUser . exe isexecuted, an exception of type Fi | eLoadExcept i on
(namespace Syst em | O) occurs; the runtime could not find ametch for Consol eGr eet i ng. dl | verson
1.2.3.4. However, using the bi ndi ngRedi r ect XML taginHel | oUser . exe. confi g, asshown here, the
run-time can be redirected to use the newer verson of Consol eG eeti ng. dl | :

<?xm version="1.0"?>
<confi guration>
<runti me>
<assenbl yBi ndi ng xm ns="urn: schemas-m crosoft-comasmvl1l">
<dependent Assenbl y>
<assenbl yl dentity nane="Consol eG eeti ng"
publ i cKeyToken="6083A74B29858FF1" />
<bi ndi ngRedi rect ol dVersion="1.2. 3. 4"
newVer si on="1.2.3.5" />
</ dependent Assenbl y>
</ assenbl yBi ndi ng>
</runtime>
</ configuration>

This sample can be found on the companion Web siteunder Pr o ect AppConfi gur ati on.

Using such binding redirections, administrators can force an older application to use the newer versons of the
referenced assemblies. If the gpplication shows any incompatible behavior, administrators can revert back to the old

settings.
Note that binding redirections require the public key token of the assembly. In generd, the assembly resolver does not
take into account the version number of a referenced assembly unlessit is srong-named.

.NET Admin Tool

~ e Although the configuration files can be created manualy, the runtime provides a Microsoft
: Management Console (MMC) snap-in cdled the NET Admin Tool (Vs Cor Cf g. nsc) that
can be used to generate configuration files. Besides managing the assemblies, the tool can dso

configure assembliesin the GAC. It dso serves some other purposes that we will come across

78

in later chapters.

Network Downloading

Using the configuration file, it is dso possible to ingtruct the common language runtime to download an assembly
over the network. Thisis done using the codeBas e tag in the configuration file. The fallowing configuration, for
example, downloads Consol eG eet i ng. dl | verson 1.2.3.4 from an HTTP site (Project
CodebaseConfi gurati on).

<?xm version="1.0"7?>
<confi guration>
<runti nme>
<assenbl yBi ndi ng xm ns="urn: schemas-m crosoft-comasmvl">
<dependent Assenbl y>
<assenbl yl dentity nanme="Consol eG eeti ng"
publ i cKeyToken="6083A74B29858FF1" />
<codeBase version="1.2. 3. 4"
href ="http:// myconpany. coml MyTest/ Consol eGeeting.dl ["/>
</ dependent Assenbl y>
</ assenbl yBi ndi ng>
</runti me>
</ configuration>

When the application isrun, assembly Consol eGr eet i ng. dl | isdownloaded and installed in the download
cache. Recall that you can view the download cache ether from the Windows Explorer or by running the command
gacutil.exe -1dl.

Y ou may aso wish to clear the download cache if need be (using thecommand gacut i | . exe dl). Aslongas
thecodeBase entry for areferenced assembly is present in the configuration file, the assembly automaticaly gets

downloaded again whenever the corresponding application triesto useiit.

For other possibilities with the configuration files and for the XML format specification for the configuration file,
consult the SDK documentation.

Programmatic Download

It is dso possible to download an assembly programmatically. The trick is to use the method
Assenbl y. LoadFr omand to specify the URL path asthe argument. Thisis illustrated in the following code

excerpt:

/1 Project CodebaseConfiguration

class M/App {

79

static void Main(string[] args) {
Assenbly a = Assenbl y. LoadFr on(
"http://1ocal host/ MyTest/ Consol eGeeting.dl");
Consol e. Wit eLi ne(a. Ful | Nane) ;

Publisher Policy Configuration File

Publisher palicy files are typicdly distributed by assembly's publishers (vendors). It is the way the vendor of a shared
assembly makes a compatibility statement about a particular version of assembly he or sheisrdeasing. The
configuration specified in the publisher policy affects adl applications that use the shared assembly.

The publisher policy is most commonly used when avendor ships a maintenance release; thet is, a newer revision of
the shared assembly that containsindividua bug fixes.

The publisher palicy fileis an XML-based file with aformat Smilar to thet of the gpplication configuration file. Asa
matter of fact, the gpplication configuration file that we used earlier for redirecting verson 1.2.3.4 of
Consol eGreet i ng. dl | toverson 1.2.3.5 can be used as a publisher palicy file.

Although the policy can be defined in an XML format, the policy fileitself cannot be consumed directly for
publishing the policy. The vendor has to creste an assembly thet links the palicy file usng the Assembly Linker
(al . exe) tool. The name of the assembly isrequired to begin with Pol i cy. <maj or ver si on>. <mi nor

ver si on>where<naj or ver si on>and<ni nor ver si on> correspond to the magjor and minor version of

the shared assembly this policy assembly will be gpplied to. For example, the following command line creates a policy
asembly Pol i cy. 1. 2. Consol eG eeti ng. dl | that can be applied to the shared assembly

Consol eGreet i ng. dl | verson 1.2x.x. Here, the palicy fileisassumed to be Consol eG eet i ng. cf g:

al . exe |ink: Consol eGeeting.cfg
out: Policy. 1. 2. Consol eGeeting.dl | keyfile:MKey.snk

Note that the assembly needs to be signed with a strong-named key pair (MyKey . snk). The .NET Framework
requires that the policy assembly be signed with the same strong-named key pair as the origind assembly. This
enaures that the policy assembly comes from the same vendor that shipped the origina assembly.

To gpply this publisher policy to ameachine, the policy assembly has to be registered in the GAC using our familiar
tool, gacut i | . exe, asshown here:

gacutil.exe -i Policy.1. 2. Consol eGeeting.dll
The sample code for publisher policy can be found on the companion Web site (project Publ i sher Pol i cy).

You may be wondering why the policy assemblies are tied to the major and minor versions of the main assembly. This
certainly looks like arestriction as you will need to define anew policy assembly by mgor and minor verson.
Deciding on the verson number granularity was a chdlenge for Microsoft. At one extreme, you could require a policy
assembly for every assembly version. This would become unmanagesble, as the number of policy assemblies would

80

be horrendous. At the other extreme, you could have just one policy assembly for al versons of an assembly, but then
expressing compatibility rulesfor al versonsin just one file would get unwieldy. Microsoft decided to go with the
middle ground. Moreover, this strategy fitswell in the red world. Vendors typicaly do not change the mgor and
minor versions of an assembly when shipping a maintenance release of an assembly.

Safe Mode

Itis possible for an application to run into problems (e.g., DLL hell) because of a publisher policy being in use. To
turn the publisher policy off for the specific application, you can set theappl vy atribute to no for the
publ i sher Pol i cy XML dement in the application configuration file, as shown here:

<?xm version="1.0"7?>
<confi guration>
<runti ne>
<assenbl yBi ndi ng xm ns="urn: schemas-m crosoft-comasmvl">
<publ i sher Pol i cy appl y="no"/>
</ assenbl yBi ndi ng>
</runti me>
</ configuration>

Turning the publisher policy off using the gpplication configuration file is referred to as the safe mode operation.

It is dso possble to findy control the safety level for each individua dependent assembly. Y ou can set theappl vy
tag (onthepubl i sher Pol i cy eement) to ether yes or no for each individua dependent assembly, as shownin
the following example:

<?xm version="1.0"7?>
<confi guration>
<runti ne>
<assenbl yBi ndi ng xm ns="urn: schemas-m crosoft-comasmvl">
<dependent Assenbl y>
<assenbl yl dentity nanme="Consol eG eeti ng"
publ i cKeyToken="6083A74B29858FF1" />
<publ i sher Pol i cy appl y="no" />
</ dependent Assenbl y>
</ assenbl yBi ndi ng>
</runti me>
</ configuration>

Machine Configuration File

The machine configuration file contains settings that gpply to dl the agpplications on the machine. Thisfile, named
Machi ne. Confi g, resdesinthe Conf i g subdirectory of the common language runtime's root directory. The

format of thisfileis similar to that of the gpplication configuration file.

81

When executing an gpplication, the common language runtime first reads the machine configuration file and then
reads the application-specific configuration file. This makes it possible to override machine-wide settings for a

specific gpplication.

Although the machine configuration file can be edited manudly, the preferred way isto use the NET Admin Tool
(Ms Cor Cf g. nsc). Figure 3.3 shows a snapshot of the NET Admin Tool being used to redirect version 1.2.3.4 of
Consol eGreeting. dl | toversion1.2.35.

Figure 3.3. NET Admin Tool.

T My Computer dsserbly Name /| Public Key Token | Bnding Policy | Codebases |
% Assenbly Cache i3 CansoleGresting 60G3a74bEIasaFL Yes Mo
Ll Configured Assemiblies .
i';:‘ Remating Services ConsoleGreeting Properties F|§|
#-La] Runbime Security Pokcy —
Apphcations General | Brding P":"'C}' Codebases |

Lize the table below bo spedify binding redirections from 2
| requested version to a rew version, Version numbers are in the
format “Major. Minoe . Buld. Revision”.
The requested version can be a sngle wersion of a range
separated by & dash, For example:
1.2340r 1.2,3.4-1.9.9.9
The niews varsion must be a single version, For example:

2.0.1,2
Requasted Verson Mesw Varsian
1.2.3.4 1,235

Lok J[Concet |

Assembly Binding

So far we have learned that assembly bindings can be redirected using either the application configuration file, the
machine configuration file, or the publisher policy. In addition, a referenced assembly can be located in either the
GAC, the application local directory, or any of its subdirectories as dictated by the pr i vat ePat h entry inthe
configuration file. This complexity makes you wonder if thereis any order that the assembly resolver followsto bind
to an assembly. Adding to this complexity is the fact that an assembly can automatically be downloaded and installed
based on the codeBase entry in the configuration file. Fortunately, there is a method to the madness.

82

Let'sfirst recgp how an assembly gets loaded in an application. There are two ways.

1

2.

When the gpplication tries to access atype defined in a referenced assembly, and the assembly has not
aready been loaded. These references are caled static references. Recdl that static references are recorded
in the gpplication's manifest.

When the application explicitly loads an assembly using methods such as Assenbl y. Load,

Assenbl y. LoadFromor Assenbl y. LoadW t hPar t i al Nane. Such references are called

dynamic references.

Deferred Loading of Assemblies

g Under .NET, areferenced assembly does not get loaded until the application triesto accessa

~— ¥ typedefined in the assembly. It is entirdy possible, for example, to run an gpplication even
though areferenced assembly is missing. Aslong as the current execution path does not access
atype from the missing assembly, the gpplication runs as expected.

Contradt thisto linking with import libraries in the case of non- .NET applications. If alinked
DLL cannot be found when the gpplication is Sarted, the execution aborts in the start-up phase
itsdlf.

Irrespective of the way an assembly isloaded, the assembly resolver uses the same agorithm for binding to the
assembly. Note that the assembly name to be loaded need not aways be fully specified; in this caseit isreferred to as
apartia reference.

The assembly resolver initistes a bind in the following order:

1

The assembly resolver determines from the input the name and culture (if any) of the assembly to load. In
addition, for loading strong-named assemblies, the resolver determines the correct assembly version to load
by examining the publisher palicy (if any), the machine configuration file, and the gpplication configuration
file (if any). The sttings in the publisher palicy are overridden by the settings in the machine configuration

file. The settings in the machine configuration file are overridden by the settingsin the gpplication

configuration file. If the specified assembly is not strong-named, the version number isignored.

If the requested assembly has already been loaded (as aresult of a previous request), the resolver binds to the
assembly that is already loaded.

For strong-named full references (non-null public key token) or if

Assenbl y. LoadW t hPar t i al Nane iscaled, the resolver checksthe GAC. If the assembly isfound,
the resolver binds to this assembly.

For strong-named references (full or partial), the resolver probesthe codeBase entry in the configuration
files. If the entry isfound, the resolver downloads the assembly and binds to it. If the download fails for

some reason, the resolver determines that the binding request has failed. No further probing occurs.

83

5. Findly, the runtime probes the gpplication's base directory, followed by other subdirectories specified in the
pri vat ePat h entry of the configuration file(s). If the reference contains culture informetion, the runtime

aso looksinto the subdirectory that matches the culture string.

If the assembly bind is unsuccesstul, the runtime throws the familiar Fi | eLoadExcept i on.
Assembly Binding Log Viewer

o If the assembly bind is unsuccessful, the runtime writes the information to alog file. The

— framework provides atool called the Assembly Binding Log Viewer (Fusl ogvw. exe) that
can be usad to examine the log file and obtain details about a specific failure. Thisisan
important tool that can save hours of frustration.

Let's pause for amoment and briefly recap what we have learned so far. An assembly isabasic unit of versioning and
deployment. It consists of MSIL code, type metadata, the manifest, and resources. An assembly can either be private
to an gpplication or can beingaled in the GAC. When loading an assembly, the assembly resolver goes through a
series of stepsto locate and bind to the assembly.

Animportant feature of the type metadata under .NET isthat it is extensble. Using attributes, you can add extra
information to any dement of your code in a nonprogrammetic way. The attribute information gets saved in the
assembly, thus making the assembly completdy sdif-describing. Attribute-based programming is so pervasive
under .NET that it deserves specid attention. Let'steke alook &t this style of programming.

Attribute-Based Programming

It is often desirable to expose certain aspects of the code such as architectura congtraints, behaviors, features, and so
forth, in anonprocedural way. Y ou are aready familiar with C++ and C# keywords such aspubl i ¢ andpri vat e.
These keywords further define the behavior of the class members by describing their accessibility to other

classes. NET lets you define additional aspects of a programming element, such astypes and fields, by means of
annotating the entity with attributes. The following code excerpt illugtrates this idea:

/1 Project Attributes

[osol eteAttribute("Pl ease don't use this nmethod")]
public static int Add(int x, int y) {
return x +vy;

public static void Min() {
int z = Add(10, 20);

In this code, method Add is marked with an attribute named Cbsol et eAt t ri but e. If any other part of the code
triesto call this method, the compiler generates awarning such asfollows (note thet thisis just awarning, and not
error, so the code still works):

mai n. cs(16,11): warni ng CS0618: ' MyApp. Add(int, int)'
is obsolete: 'Please don't use this nethod

The C# compiler has hard-coded logic to specificaly ded with some atributes suchas Chsol et eAtt ri but e.In
generd, attributes are meant to provide meaningful information to whoever isinterested in such information. For
example, consder the following declaration for a class:

[Serializabl eAttribute]
class Foo {

Annotating adasswith[Ser i al | zabl eAt t ri but e] informsthe run-timethat it is okay to seridize the
ingtances of this class. We will look at the seridization processin alater chapter.

To make attribute information available to the runtime (or any other interested party), attributes are stored in the type
metadata when the assembly is built. Contrast this to source code comments that get stripped off in the compiled
output.

Note that many .NET compilers, including the one for C#, allow you to drop the At t r i but e suffix for convenience.
For example, [Seri al i zabl eAttri but e] canasoberepresented as[Seri al i zabl €] . The compiler
takes care of expanding it to the proper form while saving the information in the metadata.

Custom Attributes

The beauty of attributes is that they provide a mechanism to extend the metadata. Extrainformation can be added to
the code ether by using the standard attributes defined by the NET Framework or by creating your own custom
attributes. The kind of information that you can add (and ingpect later) is limited only by your imagination.

Under .NET, an attribute isimplemented as aclass. The .NET Framework requires that the attribute class be inherited
fromSyst em At t ri but e. Hereisan example of acustom attribute, Devel oper At t r i but e, that Soresthe

name of the developer working on a piece of the code.

/1l Project Attributes

[Attribut eUsage(
AttributeTargets. Assenbly |
AttributeTargets. Modul e |
AttributeTargets. Del egate |
AttributeTargets. Event |
AttributeTargets. Enum|

85

AttributeTargets.Interface |
AttributeTargets. Struct |
AttributeTargets. d ass |
AttributeTargets.Field |
AttributeTargets. Property |
AttributeTargets. Constructor |
AttributeTargets. Met hod |
AttributeTargets. Paraneter |
AttributeTargets. ReturnVal ue,
Al'l owMul ti pl e=true)]

public class Devel operAttribute : System Attribute {
private String m Nane;
public Devel operAttribute(String nane) {

m Nane = nane;

.NET requires that an attribute class itsdlf be annotated with an attribute caled At t r i but eUsage. It takesa
parameter of enumerationtype At t r i but eTar get s to indicate the element of the code the attribute can be
applied on. As can be seen in the preceding example, the enumeration list for At t r i but eTar get s isquite

extensive; it includes classes, structs, interfaces, methods, method parameters, and so on.
Attribute That Is Valid on Any Target

(LT your attribute is designed to work with any target, you can smply use an enumeration vaue
:At tributeTargets. Al | ingtead of liding each target individualy.

Thefollowing example showshow Devel oper At t ri but e can be used to annotate various parts of the code:

[Devel oper ("Jay")]
public class M/Test {

[Devel oper (" Pradeep")]
public void MyMet hod() {}

ClassAt t ri but eUsage as definesabool ean property Al | owul t i pl e that can be used to control
whether the atribute can be gpplied multiple times on the same code € ement. For our class
Devel oper Attri but e, thisvaueis st to true, indicating that multiple developers can be assigned to the same

part of the code, asillustrated here:

[Devel oper ("Jay")]
[Devel oper (" Pradeep")]
public class M/Test {

Besidesthe Al | owMul t i pl e property, At t ri but eUsage defines some other properties. Check the SDK
documentation for more information.

It isaso possible to define properties for custom attributes. The following code excerpt defines a property Team(to
indicate the team the developer belongsto) onthe classDevel oper At tri but e.

publ i ¢ enum ConpanyTeam { Devel opnent, QA, Support, Unknown};

public class Devel operAttribute : System Attribute {

private ConpanyTeam m Team = ConpanyTeam Unknown;
publ i ¢ ConpanyTeam Team {

get {return m Team}

set {m Team = val ue;}

Using this property, developers can optiondly specify the team they belong to, asillustrated here:

public class MyTest {
[Devel oper (" Pradeep")]
public void MyMet hod() {}

[Devel oper ("Jay", Team = ConpanyTeam Devel opnent)]

public voi d Anot her Met hod() {}

When the code is compiled, the atribute information is saved in the assembly. One way to inspect thisinformation is
to run the assembly through the IL Disassembler. A better way under .NET isto write a program using the Reflection
APIsto obtain the needed information. We will see how to do this later in this chapter.

Advanced Topics

This section contains some advanced topics. Y ou can skip this section if you wish and vist it later. The topicsinclude
the fallowing;

87

Building assemblies that contain multiple modules as well as other files such asHTML files.

L oading resources such as strings and images programmatically and localizing resources by means of
satdllite assemblies.

Theinternds of manifest and digitd signing of strong-named assemblies.

Using Reflection to ingpect metadata and to invoke methods programmetically.

Multifile Assemblies

So far, dl the assemblies we have built consisted of a single module. Although thisis the most common case for an
asambly, it is aso possible to build assemblies containing multiple modules.

From the assembly consumer's perspective (the externd view), an assembly contains MSIL code, metadata, manifest,
and resources. From the assembly devel oper's perspective (the interna view), an assembly consists of one or more
modules, each of which contains metadata and manifest and may additionaly contain MSIL code and resources.

Why do we need a multimodule assembly? There are two cases in which creating a multimodule assembly makes

Sense:

1. Tomix code from multiple programming languages. The respective language compiler can produce modules
that can dl be combined into a single assembly.
2. A more compelling reason is that a module is loaded into memory only if atype from the module is accessed.
Thisdlowsyou to lazy load amodule. Thisis quite useful over adow link. For example, if an assembly is
being accessed over the Internet, the runtime downloads a module only if needed. Y ou could put the
frequently used types in one module and less frequently used typesin another. If the client doesn't accessthe
less frequently used types, the corresponding module is never downloaded, thereby improving performance.

Adding Modules

Let's see how we can develop a multimodule assembly. We can teke Consol eGr eet i ng. ¢s and
W ndows G eet i ng. c¢s from our previous chapter and build amodule for each of the source files. We then create

an asembly using these two modules.

The C# compiler provides acommand-line switch, - t : nodul e, to generate amodule file. Using this option, the
modules Consol eG eet i ng. nod and W ndowG eet i ng. nod can be generated as follows (Project
Mul ti Modul e- Assenbl y):

csc.exe -t:nodul e -out: Consol eG eeting. mod Consol eG eeting. cs
csc.exe -t:nodul e -out: WndowsG eeting. mod WndowsG eeting.cs

Note that in this example, one moduleis built per sourcefile. In genera, amodule can be based on any number of
sourcefiles. Thefirgt release of Visud Studio .NET does not have any support for building modules.

To create an assembly from the modules, the C# compiler provides another command switch, - addnodul e. Using
this switch, any number of modules can be added to an assembly, as shown in the following code (Project
Mul ti Modul eAssenbl y):

88

csc.exe -t:library -out:Geeting.dl [\
- addnodul e: Consol eG eeti ng. nod \
- addnodul e: W ndowsG eet i ng. nod

The generated assembly technicaly consists of three modules. ThefileGr eet i ng. dl | isthe prime module. Recall
that a prime module stores the assembly manifest.

Note that module G- eet i ng. dl | doesnot contain any MSIL code. It is not necessary for amodule to contain any

code.

Although csc. exe can be usad to build a multimodule assembly, you can aso use the Assembly Linker (al . exe)
for this purpose. Using thistool, our assembly could have been created as follows:

al.exe -t:library -out:Geeting.dl | \
Consol eG eeti ng. nrod W ndowsG eet i ng. nod

Adding Non-PE Files

An assembly isnot just limited to modulefiles. It can aso contain non: PE files such as bitmap files or HTML files.
The assembly linker provides aswitch, - | i nk, to link externd files to the assembly. The following command ling,
for example, adds ReadMe. ht masan externd file to the assembly:

al.exe -t:library -out:Geeting.dl| -link:ReadMe. ht m\
Consol eG eeti ng. nrod WndowsG eet i ng. nod

Resources
Consider the following sample code that displays a greeting to the console;

using System
cl ass MyApp

{
public static void Main() {

String greeting = "Hell o everyone!";
Consol e. Wi telLi ne(greeting);

In this code string, "Hello everyone!™ is hard-coded. However, the NET Framework aso provides away to define the
gring in an externd file. That externd file can then be embedded into the assembly. The gpplication can subsequently
load the resource programmetically.

What's the big dedl about moving strings to an externd file? For one, it smplifies locdization, the process of
customizing gpplication for multiple human languages. The team responsible for trandating the strings (and images, if
need be) to various languages won't have to deal with the code; they just deal with text-based files. A second reason,
and amore important one, is that resources for a specific culture can be embedded into a resource-only assembly and

89

aproper resource can be loaded based on the current culture setting of the application. Such resource-only assemblies
arereferred to as satdllite assemblies.

Embedding Resources

Embedding aresource in an assembly is a multistep process. In thefirst step, the resources have to be defined in an
XML format referred to asthe ResX format. A . Res X file can hold strings as well as binary images. The necessary
XML schemais documented in the SDK under the Resour ceSchena property of ResXResour ceWi t er

class.
Utilities to Manipulate Resources

ResX files are text based. To store abinary imagefile (suchasa. | pg or a. bnp file) into
— | the. ResXfile, the binary data has to be converted into ASCII format using Base64 encoding.
The SDK samplesinclude atool, Res XGen, that takes a binary image file asinput and
convertsit to XML-formatted . Res X output file. The source code for Res XGen isdso
provided.

Some other useful utilitiesin the SDK samplesinclude Res Dunp, atool to enumerate the
resourcesina. r esour ces file and ResEdi t or , aGUI tool to add string and image
resourcestoa. ResXora. resour ces file

If you are dedling with just the string resources, asin our case, then .NET provides an dternativeto using . Res X
files Name vdue pairs can be defined in atext file (typicaly with extenson . t Xt) where the nameis a string that
describes the resource and the value is the resource string itsdlf. The following excerpt shows the content of our
text-based resource file

Geeting = Hell o everyone!

In the second step, the . t Xt or the. Res Xfile hasto be converted to a binary resourcefile (. r esour ces). The
framework provides atool caled the Resource File Generator (Res Gen. exe) that can be used to generate such a
file. ResGen. exe expects an input filename and an optiona output filename as a parameter. If an output filenameis
not specified, it creates a binary resource file that has the same name asthe input filebut hasa. r esour ces
extension. It is not important to know the format of thisfile.

Assuming our text-based resource fileisnamed My St r i ngs. t xt , thefollowing commeand line generates
a. resour ces hinay resourcefile

resgen. exe MyStrings.txt M/Strings.resources

Converting between Resource File Formats

90

SERE Resgen. exe iscapable of converting any resourcefile(. t Xt , . resx, or. resour ces)
— i toany other resource file. The conversion is done based on the extension of the input and the
output filenames. Just remember that text files can only contain string resources. If a. r esx
fileora. r esour ces file contains any imeges, convertingittoa. t xt filewill losethe
image informeation.

The last step isto embed the binary resource file into an assembly. Assuming our new code, revised for loading a
gring dynamically, isstoredin Hel | 0Al | . ¢, thefollowing command line creates an assambly Hel | 0Al | . exe
that hasMySt ri ngs. r esour ces embedded iniit:

csc.exe -t:exe -out:HelloAll.exe \
-res: MyStrings.resources Hel oAl . cs

So how doestherevised codein Hel | 0Al | . cs look? Hereit iswith the changes highlighted:

/1 Project EnbeddedResources

usi ng System
usi ng Syst em Resour ces;

class MyApp

{
public static void Main() {

Resour ceManager rm = new

Resour ceManager ("M/Strings", typeof (MApp). Assenbly);
String greeting =rmGetString("Geeting");
Consol e. Wi teLine(greeting);

The framework provides aclass Resour celVanager (namespace Syst em Resour ces) that can be used to
load resources dynamicaly. Resour ceManager defines many overloaded constructors. The one that we are using
requires two parameters. The firgt parameter is the root name of the resource file. For the

MySt ri ngs. resour ces file theroot nameisMy St r i ngs. The second parameter is the assembly where this
resource can be found. Aswe know that the resource is in the same assembly as My App is, we can ask the runtime to
locate the assembly that contains the definition of type My App, as shown in the code.

Oncethe Resour ceManager object has been created, we can load the string by cdling the Get St r i ng method
on the object. This method takes the resource identifier as a parameter.

Notethat Resour ceManager aso provides amore generic method, Get Cbj ect , that can be used to load any

type of resource (text or image). For example, we could aso use the following line of code to load our tring:

91

String greeting2 = (String) rm Get Obj ect ("G eeting");

Loading animageis equaly smple, as shown in the following line of code:

Image ing = (I mage) rm Get Qbj ect (" M/l mage") ;

It isleft as an exercise for you to extend the sample program to dedl with embedded images.

Satellite Assemblies

Let's build a multilanguage application. We will extend our earlier example to dedl with U.S. English and Spanish.

Recdl that the common language runtime supports the notion of culture-neutra assemblies thet do not have any
culture-specific settings; it contains resources that can run under any culture.

Typicdly, the main assembly is built to be culture neutrd. Theideaisthat if arequested resource for a particular
culture is not found in the satdllite assembly, the runtime can fal back to the main assembly to load the resource.

For our example, we will build the satdllite assembly with Spanish culture. The main assembly will embed an English
language resource string, but will be built culture-neutrd.

Let's creste two subdirectories, en- US and es- ES. The importance of the directory names will become evident
when we examine how the runtime locates satellite assemblies. | have dso created afile My St r i ngs. t xt under
both the subdirectories, one with English strings and the other with Spanish grings.

Thefirst stepisto generate . r esour ces filesfor both the languages. The command lines are shown here:

resgen. exe en-US\M/Strings.txt en-US\M/Strings. en-US. resour ces
resgen. exe es-ES\M/Strings.txt es-ES\M/Strings. es-ES. resources

Noatice the filenames for the output files. The standard convention is to specify aresource filename as
<root-fil e-nanme>. <cul ture-nane> .resources.

The next step isto build the Spanish satellite assembly, as shown in the following command line:

al .exe -out:es-ES\Hel | oAl | . Resources.dll -c:es-ES \
- enbed: es- ES\ M/Stri ngs. es- ES. resour ces

The assembly linker supports a switch - ¢:<culture-name>, to specify the culture for the assembly, as shownin the
command line.

For proper lookup during runtime, the root filename of the satdllite assembly should be the same as that of the main
assembly and the extension should be marked . Resour ces. dl | . For example, the satellite assembly for
Hel | oAl | . exe wouldbeHel | oAl | . Resour ces. dl | . Thefilenameisnot case sendtive.

92

A culture string can aso be assigned in the source code using the Assenbl yCul t ur eAt t ri but e (namespace
System Ref | ect i on) assembly-leve attribute (attributes are covered in the next chapter). Hereis an example:

/] Set assenbly's culture to U S. English
[assenbl y: Assenbl yCul ture("en-US")]

The main assembly istypicdly culture neutral and hence should not be assigned any culture string.

To build the main assambly, the following command can be used:

csc -res:en-US\M/Strings. en-US. resources, M/Strings. resources \
Hel | oAl l . cs

Note the comma- separated syntax for the resource being embedded; the first part is the actud filename of the resource
and the second part is the name given to the resource when stored in the assembly. This is because of the way the

resource manager 0oks up aresource.
To understand the lookup agorithm, it would help us to make the following assumptions:

The name of the main assembly isHel | 0Al | . exe.

2. Theroot name of the resourcefileis My St r i ngs. Inthe code, thisisthe first parameter to the resource
manager's constructor.
The current cultureises- ES.

Theidentifier for the dring to be loaded isGr eet i ng.

Here is how the resource manager performs the lookup:

1. Trytolocae culture-specificHel | 0Al | . Resour ces. D | inthe GAC.

2. TrytolocateHel | 0Al | . Resources. Dl | inthees- ES subdirectory.

3. Veify whether the culture of the assambly ises- ES.

4. Try tolocate the resourcefile My St r i ngs. es- ES. r esour ces from the satellite assambly.

5. Try toload the named resource, G- eet i ng,from MySt ri ngs. es- ES . r esour ces.

6. If any of these Sepsfal, try to locate the culture-neutra resourcefile My St ri ngs. r esour ces fromthe
main assembly.

7. If Step 5fals, throw an exception of type M ssi nghani f est Resour ceExcept i on.

Otherwise, try to load the named resource, G- eet i ng. If the resourceis not found, return anull reference.

In this dgorithm, the filenames and directory names are dl case-insensitive.

There are ways to customize this behavior. For example, there is an overloaded method Get St r i ng that can be
used to load a gtring from a specific culture, irrespective of the current culturd settings. As amatter of fact, even the
current culture can be changed, as shown in the following code excerpt, taken from Hel | oAl | . cs:

/1 Project SatelliteAssenblies

class MyApp

93

public static void Main(String[] args) {
if (args.Length == 1) {
String sCulture = args[0];
Culturelnfo culture = new Cul turelnfo(sCulture);
Thread. Current Thread. Current U Cul ture = cul ture;

NET dassdifies the properties of a culture into two groups CurrentCulture and Cur r ent Ul Cul t ur e. Thefirst one

is used for sorting and formatting purposes and the second one is used for user-interface purposes. Thisdigtinction
was created, for example, to support large enterprises that want their employees to be able to use the local language
for the user interface but always have currencies and dates formatted the same way. The resources are loaded (by
Resour ceManager) usngthe Cur r ent Ul Cul t ur e setting (unless a specific culture setting is explicitly
requested in the cdl). Each thread within an application can have a different culture. The preceding code setsthe
culture of the current thread based on the command-line arguments passed. Run the program as follows to display the

gredting in Spanish:
Hel | oAl'l . exe es-ES
Manifest Tables

Internaly, the metadata is organized as ablock of binary data that consists of severd tables. These tables can be
broadly classfied into two groups type metadata tables and manifest metadata (or smply manifest) tables. The type
metadata contains information on each type within the module. The manifest metadata contains some record- keeping
information.

Each module in the assembly stores type metadata tables as well as manifest tables. Recall that there is one module
within the assembly with amanifest that contains some extrainformation pertaining to the assembly asawhole. The
moduleis caled the prime module and the manifest it toresis referred to as the assembly manifest.

When dedling with assemblies, it is not redlly that important to know the manifest of each module in the assembly.
What isimportant isto know the contents of the assembly manifest. Table 3.3 describes some important tablesin the
assembly manifest, which is vauable information.

In generd, unless explicitly sated, a manifest refers to the assembly manifest.

Table 3.3. Assembly Manifest Tables

Table Name Description
Assenbl yDef Contains a single entry containing the assembly's name, version, culture, and sa
on.

94

Fi | eDef Contains one entry for each module and resource file that is part of the
assembly.

Mani f est Resour ceDef |Contains information on each resource that is part of the assembly.

Export edTypeDef Contains one entry for each public type exported from all the modules in the
assembly.
Assenbl yRef Contains one entry for each assembly referenced by the module. Note that each

module individually defines the list of referenced assemblies.

Modul eRef Contains one entry identifying the module. It includes the module's filename and
its MVID.

All the assembly manifest tableslisted in Table 3.3, except Expor t edTypeDef , can dso be found in the manifest
for other (nonprime) modules in the assembly. For a nonprime module, the Assenbl yDef table does not contain
any entries.

Storing Assembly References

— When an gpplication is built, the compiler stores the name, the version number, the culture, and
—— |# the public key token (if any) of the referenced assembliesinthe Assenbl yRef table of the
manifet.

It isinteresting to note that the Assenbl yRef table stores the public key token (instead of
the public key) for each referenced assembly. Thisis done to conserve file space.

It isinteresting to learn the internds of building a strong-named assembly.

TheFi | eDef metadatatable of the assembly's manifest containsthe list of files that make up the assembly. Aseach
fileis added to the manifest, the file's content is hashed and stored dong with the file name. The default hash

agorithm is SHA-1 but can be changed in two ways. using the Assenbl yAl gl DAt t r i but e (namespace
Syst em Ref | ect i on) atribute or with al . exe's-agid switch.

Once the PE file containing the assembly manifest (the prime module) has been built, the PE file's entire content is
hashed. The hash agorithm used hereis dways SHA-1 and cannot be changed (dlthough this may change in later
releases). This hash vdue (typicaly around 160 bytesin size) is signed with the specified private key and the resulting
Rivest- Shamir- Adleman (RSA) digita signatureis stored in a reserved section (not included in the hash) within the
PE file. Another section of the PE file, cdled the .NET runtime header, is updated to reflect the location where the
digitd sgnature is embedded within the file.

The specified public key is aso embedded in the manifest. The public rivate key mechanism guarantees that no

other company can produce an assembly with the same public key, aslong as your company does not share the key

pair with others. Those interested in learning more about the public rivate key and the RSA digital signature can see
the MSDN documentation on cryptographic APIs (Cr ypt 0API).

95

The bottom line of thiswhole processisthat it provides the common language runtime a fool proof way to ensure that
ashared assembly has not been tampered with. When the assembly is being ingtaled into the GAC, the system hashes
the PE file's contents and compares the hash value with the RSA digital signature embedded in thefile (after it is
unsigned with the public key). If the values are identicd, then the file's content has not been tampered with. Thisisa
very fast check. Similar trategies have been used for Sgning e-mails.

In the case of a multimodule assembly, the integrity check is performed only on the module that contains the manifest.
For al other modules, the check is performed when the module gets loaded at runtime.

Note that only a strong-named assembly can be ingtdled into the GAC. Attemptsto ingall any other assembly result

in an error.

It should be noted that the strong-named mechanism only guarantees that an assembly, once crested, has not been
tampered with. It doesn't tell you who the publisher of the assembly is. If the publisher wantsto associate its identity
with the assembly, then the publisher must use Microsoft's Authenticode technology. Covering Authenticode is
beyond the scope of this book

Delayed Signing

Once a public private key pair is generated, the private key should never be compromised. Many companies prefer
that the private key be accessed only by afew privileged people in the company. The public key can be fredy
distributed.

Inability to access the private key could be a huge burden during developing and testing the assembly. Fortunately, the
framework provides a mechaniam to develop an assembly without using a private key at dl; just the public key is
aufficient. This mechanism is cdled delayed signing.

The Strong Nametool (sn. exe) provides switch - p to extract the public key from a strong-named file (thefile
containing the public private key pair). The following command, for example, extracts the public key from
MyKey. snk and storesitin MyKey. publ i c:

sn.exe -p MyKey. snk MyKey. public

MyKey. snk can now be stored away in a safe place and the public key fileis distributed to the developers.

The next step is to embed the public key information (using the familiar Assenbl yKeyFi | e atribute) and
indicate to the compiler thet the signing of the assembly is being delayed. Thisis done by means of the assembly-level
atribute Assenbl yDel aySi gn. Reevant code is shown here (Project Del ayedSi gni ng):

[assenbl y: Assenbl yKeyFi | e(" MyKey. public")]
[assenbl y: Assenbl yDel aySi gn(true)]

Obtaining Public Key Token

96

~ e Hereisaquick way to obtain the public key token from a strong-named file; thet is, thefile
containing the key pair. Firgt extract the public key from the key pair usng sn. exe and save
itin afile. For example, the following command extracts the public key from MyKey. snk

-

- ~
and svesitin MyKey. publ i c:
sn. exe -p MyKey. snk MyKey. public
Next,runsn. exe -t onthepublic key file, as shown here:
sn.exe -t MyKey. public
The command displays the public key token in the console window.

Note that running the command on the origind file that contains both the public and the private
key aso generates a public key token. However, this vaue is bogus because the file does not
gore any extrainformation to indicate thet it contains something besides the public key. Asa
result, sn. exe cannot determineif the file contains extrainformation. It smply runs through
the bits and returns a result.

When the source is compiled, the compiler embeds the public key information (in the Assenbl yDef table) so that

other assemblies that reference this assembly can generate and use the public key token. In addition, the compiler
leaves enough space in the resulting PE file for the RSA digita sgnature (the compiler can determine how much

space is needed).

Note that, instead of using the assembly-levd attributes, ddayed signing can dso be accomplished by using
al . exe's-keyfile and -ddlaysign switches.

At this point, the resulting assembly does not have avdid sgnature. If wetry to inddl thisassembly in the GAC,
the NET Framework assumes that the assembly has been tampered with and falsto load. To force the runtime to
acoept the assembly, you must tell it to skip the verification of this assembly. Thisis accomplished using sn. exe
with - VI switch, as shown here;

sn.exe -Vr Consol eGeeting.dll

A bit of awarning isin order. Y ou should never do something like this with an assembly you don't know abot.

The assembly can now beingtaled in the GAC:

gacutil.exe -i Consol eGeeting.dll

At this point, you can go ahead and test your agpplication as normd.

97

Note that the - VI switch does not actualy modify the assembly. Instead, it adds the specified assembly's strong name

to alist of assamblies for which verification should be skipped on the loca machine. Thelist is stored as a set of
subkeys under the registry key HKLM Sof t war e\ M cr osof t\ St rongNane\ Veri fi cati on.If youplan
toingdl the assembly on a different machine, youneedtorun sn. exe - Vr onthefile once again on the new
meachine.

Once you are ready to ship the assembly, you can be signed with the origina private key, as shown here:

sn. exe -R Consol eGeeting.dl | MKey.snk

Reflection

All .NET-compliant compilers are required to generate full metadata information about every classtypein the
compiled source code file. Among other things, this metadata contains alist of modules in the assembly, adeclaration
for each type in the assembly, the base class and the interfaces the type inherits from, the name and type (methods,
properties, events, and fidds) of dl its members, and the signature of each of the methods. Figure 3.4 showsa
smplified layout of the information contained in the type metadata

Figure 3.4. Metadata hierarchy within an assembly.

L Module Global
Bl MryCa leulator Methods
Assambly
T
Types 3 CﬂlILFlflbr
|
—>| Method: tethod Add 3| Para mefers [: P
. ‘ Methad Parameter
. hain inty
—3| Froperiies
Shaded bos
e epgienne

The type metadatais organized in a hierarchica fashion:

An assambly contains alist of modules.

A module contains aligt of types and global methods. Note that C# does not alow defining globa methods.
A method, even if defined as datic, till needs to be defined as part of atype.

A type contains alist of methods, alist of fields, alist of properties, and alist of events.

A method contains alist of parameters and a return type.

Not shown in Figure 3.4 isthat al the elements of the code including assembly, module, type, method, and so on, also
contain alist of associated ttributes.

98

Here is the sample code that correspondsto the type Cal cul at or usedin Figure 3.4. The codeis compiled into an
assembly named My Cal cul at or . exe:

/1l Project Reflection/M/Calcul ator

using System

nanmespace MyConpany
{
public class Cal cul at or
{
public int Add(int x, int y) {
return (x+y);

public static void Main() {
Cal cul ator calc = new Cal cul ator();
int sum= cal c. Add(10, 20);
Consol e. Wi telLi ne(sunj;

The .NET Framework provides a set of classes under the namespace Syst em Ref | ect i on to inspect the
metadata. The following code excerpt illustrates how you can load an assembly and obtain information on modules,
types, and methods contained in the assembly:

/1 Project Reflection/MtadataVi ewer
/1 Note: Code has been nodified slightly for easy reading

public static void DunpAssenbl y(String assenbl yName) ({
Assenbly assenbly = Assenbly. Load(assenbl yNane) ;
Consol e. Wi teLine("Assenbl y={0}", assenbly. Ful | Nane);

/1 Get the list of nodules in the assenbly
Modul e[] nodul eLi st = assenbl y. Get Modul es() ;
foreach(Mdul e nod i n nodul eLi st) {

Consol e. Wit eLi ne("Mdul e={0}", nod. Nane);

/[l Get alist of types in the nodul e
Type[] typeList = nod. Get Types();
foreach(Type type in typelList) {

Consol e. WiteLine(" Type={0}", type. Nane);

/[l Get alist of methods in the type

99

Met hodl nf o[] met hodLi st = type. Get Met hods() ;
f oreach(Met hodl nfo nmet hod i n et hodLi st) {
Console. Wite(" Method= {0} {1}(",
net hod. Ret ur nType, et hod. Nane) ;
Paranet erl nfo[] pL = method. Get Paraneters();
for(int i=0;i<pL.Length;i++) {
Console. Wite("{0} {1}",
pL[i]. ParaneterType, pL[i]. Nane);
} /1 for each param
} /1 for each nethod
} /] for each type
} // for each nodul e

Information on classes Assenbl y, Modul e, Type, Met hodl nf o, Par anet er | nf o can be obtained from the
SDK documentation. Each of these classes encapsulate a specific element of the code.

Here isthe output when the program isrun againgt My Cal cul at or . exe:

Assenbl y=MyCal cul at or, Version=0.0.0.0, Culture=neutral, \
Publ i cKeyToken=nul |

Modul e=nycal cul at or. exe

Type=Cal cul at or

Met hod= System I nt 32 Get HashCode()
Met hod= Syst em Bool ean Equal s(System Cbj ect obj)
Met hod= System String ToString()
Met hod= System I nt 32 Add(System Int32 x, SystemInt32 vy)
Met hod= Syst em Voi d Mai n()
Met hod= System Type Get Type()

As can be seen, assembly My Cal cul at or e. exe contains one module. This module contains type Cal cul at or,
which defines methods Add and Mai n, as expected.

Y ou may be wondering where the other four methodson Cal cul at or came from. These methods are defined by
classSyst em Obj ect . Recadl that every type under .NET directly or indirectly inheritsfrom Syst em Cbj ect .

Using Reflection, it is dso possible to invoke amethod programmaticaly. In the following code excerpt, method Add
onaninganceof Cal cul at or isinvoked dynamicaly:

/'l Project Reflection-MetadataVi ewer

public static void Methodl nvokeDeno() {
Type t =
Type. Get Type(" MyConpany. Cal cul ator, MyCal cul ator");
obj ect calc = Activator. Createl nstance(t);

100

Met hodl nfo m = t. Get Met hod(" Add");

object[] pL = newobject[] { 10 /*x*/, 20 /*y*/};
int sum= (int) m.lnvoke(calc, pL);

Consol e. WiteLine("Sum={0}", sun);

Under .NET, just as an assembly can be represented by a display name, atype can dso be represented by adisplay
name. The syntax for the display namefor atypeis:

Nanespace. TypeNane <, assenbly nanme>

Given the display name of atype, the type can be loaded by calling astatic method Ty pe. Get Ty pe and an instance
of thetype (Cal cul at or inour case) by caling agatic method Syst em Act i vat or . Cr eat el nst ance.
The rest of the code obtains the method information that we are interested in invoking, packs the method parameters

in an array, and invokes the method on the Cal cul at or instance.

This concludes our basic introduction to Reflection under .NET. For other possibilities with Reflection and metadata
ingpection, check the SDK documentation as well as the SDK samples. Y ou may aso wish to check out the
System Ref |l ecti on. Em t namespace; it contains classes to alow generating metadata and MSIL instructions

programmaticaly and optiondly generate a PE file on the disk.

Summary

An assambly is the basic unit of versoning, culture, and deployment. Y our source code is ultimately assmilated into
an assembly that becomes available for distribution.

From the assembly consumer's perspective (the externd view), an assembly contains the following:

Type metadata (describing the properties, methods, and fields of each type defined in the assembly).
MSIL code (the implementation of each type defined in the assembly).

Assembly manifest (describing overdl information about the assembly).

Resources (e.g., strings and bitmaps).

From the assembly developer's perspective (the internal view), an assembly consists of one or more executables (PE
files) caled modules, each of which contains type metadata (optiona), manifest, resources (optiona), and MSIL code
(optional). One module is designated as the holder of the assembly's manifest.

The assembly's manifest contains information such as name of the assembly, its verson and culture settings, thelist of
filesin the assembly, its public key (if any), thelist of referenced assemblies, and so on.

The assembly's type metadata contains complete information on types that are present in the assembly. Thistype
metadata can be obtained programmaticaly using Reflection APIs.

101

In case of a single-module assembly, the module itself designates the assembly. Thisis by far the most common case
for an assembly.

An assembly can aso embed resources (e.g., Srings or images) or can have links to externd files such asHTML
pages. Assemblies storing just the resources for a specific culture are called satellite assemblies.

Assemblies can ether be private to an gpplication or can be shared by multiple applications.

A shared assembly hasto be installed in the GAC. To ensure that a shared assembly has not been tampered with, it has

to be signed using apublic private key pair mechanism. Such asigned assembly is referred to as a strong-named
assembly.

A grong-named assembly contains adigital signature based on the public private key pair. The common language
runtime can verify this digita sgnature using just the public key. This guarantees that an assembly has not been
tampered with after it has been shipped.

The .NET Framework has gone to gresat lengths to ensure that assembles are not subject to the traditional software
deployment problems such as DLL hell.

The assembly resolver undergoes a series of stepsto locate and bind any assembly that needs to be loaded. If an
assembly could not be located for some reason, the resolver writes the failure information in alog file that can be
viewed through the assembly binding log viewer.

The runtime's assembly binding behavior can be customized by means of configuration files. The configuration files
can be ether created for a gpecific application, or the vendor of a shared assembly can specify its configuration usng
publisher policies. Y et another option isto administratively define a configuration at the machine leve.

It isdso possible to turn off publisher policies for a specific gpplication using the gpplication's configuration file. This
mode of operation is referred to as safe mode operation.

References

[Fe-02] Pietrek, Matt, " An In-Depth Look into the Win32 Portable Executable File Format," MSDN Magazine,
February 2002. msdn.microsoft.com/msdnmeag/i ssues/02/02/PE/PE.asp

[Alv-95] Alvestrand, H., "Tags for the Identification of Languages,” RFC 1766, The Internet Engineering Task Force,

March 1995. www.igtf.org/rfc/rfcl 766.txt

102

Chapter 4. Essentials of the .NET Framework

In the previous chapter, we looked at how to write, compile, and execute code that targets .NET. In this chapter, we
examine the facilities that the NET Framework provides to load and execute the code and provide servicesto the
executing code. We start with an overview of various components that congtitute the .NET Framework. Then we look
at the overd| process of managed code execution. We will see how .NET applications can be adminigrativey
controlled using externd configuration files and how the configuration mechanism can be extended to store custom
sttings. We then look at the type system used by the common language runtime and examine the memory and
performance considerations of using reference types versus vaue types. We examine how the CLS providesfor
cross-language interoperability. We look at how the execution engine vdidates the metadata, verifies the MSIL code
for type-safety, and performs J T compilation on the MSIL code. Finally, welook &t the automatic memory
management feetures of the runtime and how it smplifies or complicates programming under .NET. By the end of the
chapter, you will have agood understanding of .NET architecture and how it helpsin producing robust gpplications
that can potentialy be reused by any programming language under .NET. Y ou will dso learn the Srategies of
generating efficient code.

.NET Framework Overview

The Internet is evolving from a collection of isolated Web stesinto a general communication bus for distributed
gpplications. Not only could the gpplications be geographicaly separate, but they adso could be running on different
hardware and OS platforms. Y et, they can communicate with each other over the Internet. The key that makesthis
communication possible is Web services, a mechanism to exchange messages between distributed gpplications using
industry standards such as XML and HTTP.

The .NET Framework was designed from the ground up around this vision. Support for XML and Web servicesis
built into the framework. Any application developed for .NET has the potentia to run on avariety of hardware and
OS platforms.

The NET Framework, however, had many other design gods as well. The following are some of the important ones
that the .NET Framework addresses:

Reduced plumbing: To provide arich set of classes so that devel opers can write less code and reuse more.
Smpler development: To provide a code execution environment that reduces software issues. For example,
deveopers need not write code to free previoudy alocated memory; the framework provides a
memory-management mechanism that frees any unused memory automaticaly.

Smpler deployment: To make ingaling applications as easy as using asmple XCOPY command; aso to
support running multiple versions of the same component side by side.

Unified programming model: To define a standard, consistent way of programming and fecilitate
Cross-language programming.

Scalability: To provide features that help devel oping scaable gpplications.

Security: To support developing secure applications. Security is an important consderation for applications,
epecidly if they are communicating over the Internet. The framework must guarantee that the codeis safe

103

to execute. Furthermore, the security system is granular rather than asimple on off switch, enabling the
programmer or the administrator to control what can run depending on the user and the source of the

program.
Cross-platform integration: To build communication on industry standards such as SOAP so

that .NET-based code can communicate with any other code.
Interoperability: To support integrating .NET applications with native Win32 APIs and COM+ components.

Even if you do not intend to develop applications targeting the Internet, you can till use the NET Framework to
develop applications that are robugt, secure, and reliable. Moreover, by leveraging the rich set of classes provided by
the framework, you can achieve grester productivity.

Anatomy of the Framework
Figure 4.1 shows the mgjor components of the NET Framework.

Figure 4.1. .NET Framework components.

[vener || cee H W sem - 1

Common language Specification,/Comman Type Specification

[LIN2Ipnis [ensia Sas)
5|00]

Windows | | COM+ Services I]

The heart of the NET Framework is the common language runtime, which is responsible for executing the managed
code. During execution, the common language runtime provides features to the code such as automatic memory
management, security, and so on. It sits on top of the Windows OS and, in the first version, uses COM+ services

interndly for some of its functiondity.

The .NET Framework aso provides more than 2,000 types (classes, interfaces, Sructures, etc.) that not only encble
programmeatic access to the features of the common language runtime, but aso provide a number of useful high-level
services to help devel opers boost productivity. These types are collectively referred to asthe NET Framework Class

Library.
The NET Framework Class Library can be broken down roughly into four groups.

BCL

ADO.NET and XML
Windows Forms
ASP.NET

A w P

104

The BCL implements the st of functionality that is shared by al the applications targeting the .NET Framework. It
defines and implements all the core typessuch as Syst em St ri ng, Syst em | nt 32, and so on, that we have

seen in the previous chapter, used by every application.

ADO.NET isthe successor to an earlier data access technology called Active Data Object (ADO). ADO.NET
provides a set of classesto access and manipulate data. The data is typically obtained from a database and can be
converted to XML for better remote manipulation.

Windows Forms (often called WinForms) provides features for developing standard Windows desktop applications. It
provides arich, unified set of controls and drawing functions for al languages. It effectively wraps Windows user
interface APIsin such away that developers rarely need to access the Windows APIs directly.

ASP.NET isthe successor to a Web request processing technology from Microsoft called Active Server Pages (ASP).
ASP.NET adds two significant enhancementsto ASP;

It smplifies the process of developing Web services.

2. It providesamode of developing a Web browser-based user interface called Web forms. Controls on the
Web forms run on the server but the user interface is displayed on the client browser. ASP.NET takes care of
dl the coordination and behind-the-scenes activities. The result is Web interfaces that |ook and behave very
much like WinForms interfaces. Moreover, the Web interfaces can ded with a broad range of browsers such
as Internet Explorer, aswell as less capable browsers such as the ones found on wireless palmtop devices.

Web forms render themsalves appropriately on the target device.

It isworth noting thet the term ASP.NET is used in two different contexts. Asaclasslibrary, it provides arich set of
classes to devel op gpplications such as Web services and Web forms. ASP.NET aso refers to aruntime infrastructure
that runs under Internet Information Services (11S) and services ASP.NET applications.

The Common Type Specification (CTS) defines rules so that compiler vendors can implement a programming

language of their choice on .NET. Microsoft itself has implemented .NET compilers for many languages including C#,
Visua Basic.NET, J#, JScript, and so on. Even existing C++ code can be compiled for .NET under what Microsoft

cdls It Just Works (1JW).

The CLS makesit possible for gpplications developed in different languages such as C# and Visua Basic.NET to
communicate with the class library as well as with each other.

To develop applications, Microsoft also provides tools such asthe .NET Framework SDK and Visud Studio .NET
IDE. The SDK provides ussful documentation, samples, programmer's tools, and so on. The IDE provides a number
of features to boost developers productivity.

A detailed coverage of ADO.NET and Windows formsis beyond the scope of this book, but we touch on them as
necessary. As for ASP.NET, our focusis on the core aspects such as developing Web services. User interface-related

topics are not covered.

Installing the Framework

105

Toingall the NET Framework, Microsoft provides a stand-alone program (dot net r edi st . exe) that can be
downloaded from Microsoft's Web site. Thisfile contains afile, dot net f X. exe, that can be extracted by
executing dot net r edi st . exe. Ruming dot net f x. exe ingdlsthe framework inthe

%ni ndi r% M crosoft. Net\ Franmewor k\ v<ver si on> directory where %wi ndi r %pointsto the
Windows directory and <ver si on> isthe verson number of the framework. On my system, this directory is
C\WInNT \Microsoft. NET\Framework\v1.0.3705."

™ The version number for the first release of the .NET Framework is 1.0.3705.

Note that ingtalling the Framework SDK or Visud Studio.NET autométicaly ingalsthe NET Framework.
Redistributing the Framework

S Y ou can download the Microsoft .NET Redistributable Package (dot net r edi st . exe)

—— | from Microsoft's Web site, extract dot net f x. exe, and useit for redigtribution. From your
setup program, you need to execute dot net f x. exe beforeingaling any of your NET
executables.

Dot net f x. exe can aso be found on the Windows Component Upgrade CD of Visua
Studio. NET ingal CDs.

Check the article ".NET Framework Deployment Guide" [MS-02] for complete information
and the End-User License Agreement on redistributing the NET Framework.

Managed Code Execution Overview

Figure 4.2 presents the overal picture of how the source code gets compiled, loaded, executed, and serviced by
the NET Framework.

106

Figure 4.2. Managed code execution.

DEVELOPMENT DEPLOYMENT
) L. FI Applicetion Directary]
— »[ox |
Lource Code Assa mb-},r
EXECUTION

Assembly lnks

- + Class List

A!Sﬁl‘l‘ll}hr -F‘"“-#"----“-h"---‘hq-‘.‘.‘
Reache
Config urotion
Configuation Manager
Files
-H-h
Palicy Teemmmeeo iy | CLR Services
: ™ KManager iﬂ.i . GO
Hm‘. m * Exceplion

* Class Inttiohzer

* Security
Palic Gionied
¥ Permissions J::I.:m:
e R gy
'.'.._‘_..-- -ﬁ.,“_lu-
* ﬁ““« m Il

Class Vioble + > JT + Motive Code
load e Class Infe verificoBon + 3C fable

A .NET-compliant compiler takes one or more source files asinput and generates an assembly file (Chapter 3) as
output.

A traditiond compiler processes the source code and stores native machine language ingructions in the output.

A .NET-compliant compiler, however, does not generate machine language ingtructions. Instead, the ingtructions are
stored in the assembly in aformat caled MSIL. Aswe will see shortly, when the assembly is executed, the runtime
converts the MSIL ingructions to native machine language indructions on the fly.

An assembly can be built either asalibrary (DLL) or as a stand-aone executable (EXE). From the runtime's
perspective, thereis no difference between these two types except that an EXE-based assembly isrequired to have an
entry point of execution. The entry point method must be declared st at i ¢ and must be named Vai n. The method
can optiondly take command-line parameters as input and can optiondly return an integer vdue. Thefallowing are
possible method signatures for VR n in C#:

static void Min();
static void Main(System String[] argv);
static int Main();
static int Main(System String[] argv);

107

Once built, the assembly can be copied to an application'sloca directory or subdirectory on the user's machine. An
assembly can aso be ingtdled into the GAC (Chapter 3), if it is desired that the assembly be shared by many
gpplications.

An gpplication can aso ecify that an assembly be downloaded over the Internet. In this case, the runtime stores the
assembly in an area called the download cache. Assemblies downloaded over the Internet run under lesser security
privileges, thus safeguarding the machine from maicious intentions.

The part of the common language runtime that is responsible for loading and executing an assembly is cdled the
execution engine (EE). The EE is composad of many units, each of which is responsible for executing a specific task
or tasks:

The assembly resolver locates an assembly using some heurigtics and externdly specified configuration
information.

The assembly loader |oads an assembly and stores in memory information about the assembly such asthe
name and version of the assembly and the available list of classes.

The policy manager grants certain security permissonsto an assembly based on externally specified security
policy and the source of the assembly.

The class loader loads a class and constructs an in-memory representation of the class such asitsvirtud
table (vtable).

TheJIT compiler covertsthe MSIL code to the native code. In the process, it checks the metadata for
congstency (thisis caled validation) and verifies whether the code is safe to execute.

The configuration manager makes externaly specified configuration information available to any entity
within the EE thet needsit.

When an assembly's code is to be executed, the assembly resolver locates the assembly based on the name of the
assembly and certain other characterigtics, such asits verson number and the externa configuration. If need be, the
assembly is downloaded over the network. The assemhbly is then loaded into the EE. The loader stores the information
about the assembly and the list of classesit exposesin aninterna table.

Before any code from the assembly can be executed, the EE consults the policy manager for granting certain security
permissons for the code. In granting permissions, the policy manager checks the externaly specified policy againgt
certain characteristics of the assembly. For example, an assembly that has been downloaded over the Internet is
granted alesser degree of permissions such as being unable to read or write to the hard drive.

The class loader then loads the class containing the code to be executed and stores information about the dlassin an
interna table.

Recdl that the code istypicdly stored in MSIL form in the assembly. Before executing a class method, the MSIL
code has to be converted into the native code. This ontthe-fly converson isreferred to as J T conversion. The part of
EE that is responsible for this conversion is cdled the J Tter. Besides compiling the MSIL code, the JI Tter dso
performs some additiona checks on the code, such as verifying the code for type safety.

Asthe code is executing, the EE provides certain services to the code, such asthe following:

108

Automatic memory management
Code access security

Debugging and prafiling services
Interoperability with unmanaged code

We have dready learned about managed code and unmanaged code in the previous chapter, but hereis arefresher.
For the EE to provide services to the executing code, the code must meet certain requirements of the common
language runtime and must supply certain necessary metadata to the EE. Such codeis caled managed code. All code
based on MSIL executes as managed code. However, one can aways devel op code without regard for the convention
and requirements of the common language runtime. Thereis plenty of existing code written thisway. Such code is
referred to as unmanaged code. Although the EE can execute unmanaged code, the code cannot avail the services
provided by the EE. For example, the EE cannot provide automatic memory management or code safety for
unmanaged code.

Asthe code executes, it may call additiond methods. If the method being called has not yet been compiled, the EE
interrupts the code to JIT the method. In the process, a new assembly may get loaded (e.g., if the method being called
belongs to a different assembly) or additiona classes may get loaded.

The execution continues until the program comesto alogica ending (returns from Mai n). The execution dso stops if
the program gets aborted. This may happen, for example, if an exception is thrown, either by the program or by the
runtime, and the program fails to catch the exception.

In the rest of the chapter, we examine each of the mgjor steps of the managed- code execution process. Theideaisto
get agood understanding of the development, deployment, and execution processes under .NET. Some other aspects,
such asinteroperability, security, distributed computing, and so on, are covered in later chapters.

Before we proceed further, there is one thing worth mentioning. The .NET Framework provides a decent set of
performance counters that you may wishto look at. It will give you agood insght into the managed execution process
and help you track the performance of your gpplication.

.NET Performance Counters

s ¢ Track your gpplication’s performance by monitoring .NET performance counters. These
: counters can be viewed, for example, by using an OS-supplied tool, per f non. exe.

Configuration

The .NET Framework provides afile-based configuration mechanism that gives administrators control over the
way .NET applications run, without any need for recompiling the gpplications. For example, administrators can

control:

109

which protected resources an application can access

which verson of an assembly an gpplication can use (binding redirection)
which version of the common language runtime an application should use
where the common language runtime should search for an assembly
which channd (TCP, HTTP, etc.) and ports an application should use
which machine, channel, and port aremote object can be obtained from
custom gpplication configuration settings

security permissions that should be granted to an assembly

Based on their usage, the configuration under .NET can be classified as a genera- purpose configuration or a security
configuration.

General-Purpose Configuration

In Chapter 3, we learned that there are two types of genera- purpose configuration filesthat are available under .NET:
Oneisat the machine level and the other is at the gpplication level. We dso learned how some of the tasks mentioned
earlier, such as binding redirections, can be performed using these configuration files. We will be covering many
agpects of the configuration in the chapters to come. In this section, we look a how the application configuration file
can be used to provide custom configuration settings.

Custom Configuration Settings

Application configuration files are good candidates to store custom application settings. The .NET Framework
provides a predefined configuration section called appSet t i ngs that developers can use to store key vaue pairs,

as shown in the following example:

<confi guration>
<appSettings>
<add key="Li cense" val ue="abracadabra"/>
</ appSettings>
</ configuration>

To programmaticaly access configuration settings, the NET Framework provides a set of classes and interface under

the namespace Sy st em Conf i gur at i on. Of interest to usisaclass, Conf i gur at i onSet ti ngs, thet lets

us read the configuration sections. This class provides a property, AppSet t i ngs, that can be used to read the
vauesfromtheappSet t i ngs section, asillustrated in the following code:

/'l Project Custonfettings

public static void DenoSinpl eSettings() {
String s = ConfigurationSettings. AppSettings["License"];
if (s !="abracadabra") {
Consol e. Wi t eLi ne(
"Pl ease contact your software vendor!");
return;

110

}

Consol e. WiteLine("Proceeding...");

The predefined section appSet t i ngs isuseful for soring key vaue pairs. If your needs require more than just key

vaue pairs, then it is possible to define your own sections and the handler code for the sections. For example, you
might wish to definean XML tag <owner > that stores the first name and the last name of the product's owner as

attributes. An example is shown here:
<owner FirstNane="Pradeep" LastNane="Tapadiya" />

To be able to process thisinformation, you need to define a configuration section handler class. A configuration
section handler classimplements astandard interface | Conf i gur at i onSect i onHandl er . Hereisthe

definition for this interface:

interface | ConfigurationSectionHandl er {
obj ect Create(object parent, object context, Xm Node node);

While reading the configuration, the configuration system calls method Cr eat e on the handler associated with a
configuration section. This method is required to read the configuration section (passed in as parameter node) and
return an object representing the configuration.

Thefirst two parameters to the method Cr eat e are meaningful only under ASP.NET; otherwise the configuration
sysem setsthemtonul | . Parameter par ent pointsto the object created by the section handler for the parent
web. confi g if youhave mulipleweb. conf i g filesin the hierarchy. Parameter cont ext pointsto an

Ht t pConfi gur at i onCont ext object that provides the current ASP.NET context information such asthe
virtua peth totheV\eb. conf i g file

Here is the implementation of our section handler:

/'l Project Custonfettings

public struct Person {
public String FirstNaneg;
public String LastNane;
}
public class PersonHandl er : | ConfigurationSectionHandl er {
public object Create((hject parent, object configContext,
Xm Node section) {
Xm AttributeCol l ection attri bCol = section. Attri butes;

Per son person = new Person();
person. FirstName = attri bCol ["Fi rst Nane"] . Val ue;
person. Last Nanme = attri bCol ["Last Nane"] . Val ue;

1

return person;

Our implementation of the method Cr eat e simply reads the attributes from the supplied XML node and constructs
and returns an object of type Per son.

The next step isto let the configuration system know that the <owner > section in the configuration file should be
handled by type Per sonHandl er . Thisisdone by means of the<sect i on> entry in the configuration file. This
isillustrated in the following configuration settings:

<confi guration>
<confi gSecti ons>
<section name="owner" type="PersonHandl er, M/App" />
</ configSecti ons>

<owner FirstName="Pradeep" LastNanme="Tapadi ya" />
</ configuration>

This configuration indicates that the <owner > section and anything underneeth it be handled by the type
Per sonHandl er that isdefined in assembly My App. Note that the configuration system requires that the
<sect i on> entries be grouped under anode<conf i gSect i ons>.

At this point, we are st to reaed the configuration. Thisis done by means of a gtatic method,
Confi gurati on. Get Conf i g. Thefollowing code excerpt shows how we can read the <owner > section from
the configuration file and obtain a Per son object:

public static void DemoConpl exSettings() {
Person owner =
(Person) ConfigurationSettings. GetConfig("owner");

A fina word: If XML attributes are what you are interested in reading, as was our case, then you can aso use
a.NET-ddfined class Si ngl eTagSect i onHandl er . You can find a usage example on the companion Web site.

This concludes our introduction to reading custom configuration settings. Check the SDK documentation for more
details on custom configuration.

Security Policies

Under .NET, security-related configuration settings are stored under a different file, the security policy file Thisfile
includes security information such as permissons granted to an assembly. We will look at the security configuration
settingsin alater chapter on security.

112

Common Language Runtime

The ECMA dandards define an infrastructure in which a single agpplication can be developed using multiple
high-level languages. The standards aso pecify that the application should be capable of running on different system
(hardware and OS) platforms without being rewritten for each specific platform. ThisECMA specification is referred
to asthe CLI. The current specifications for the CL1 can be downloaded from the ECMA's Web site
(http:/Amww.ecmachy). It is worth mentioning that C# specifications have also been submitted to the ECMA.

Microsoft'simplementation of the CLI is caled the common language runtime. The common language runtime forces
aunified programming model and provides features such as cross-language integration and type safety. It dso
manages the execution of the code and provides certain runtime services to the managed code. In this section, we
examine some important aspects of the common language runtime.

Strictly spesking, the common language runtime implements more than whet is specified in the CLI. For example, the
common language runtime provides support for managed code to interoperate with COM components. Thisis not part
of the CLI specification. The focus of the CLI is more toward what makes sense across different platforms.

Common Type System

At the center of the CLI isasingle type system, the CTS. The CTSisamode that defines the rules CLI follows when
declaring, using, and managing types. The CTS establishes a framework that enables cross-language integration, type
safety, and high- performance code execution.

The CTS dso defines a base set of datatypes (e.g., | nt, st ri ng, etc.) and specifications for extending these types.
The base datatypes are defined in the BCL. The complete list of base data types can be obtained from the ECMA
pecifications. We will look a afew important ones shortly.

Confusion over BCL

g Note that the ECMA standards distinguish between the Runtime Infrastructure Library, Base
— W ClassLibrary, Network Library, Reflection Library, Floating-Point Library, and Extended
Array Library. However, Microsoft lumps dl these libraries into one and cdlsit the BCL.

The ECMA gandards document is till awork in progress as of this writing. Hopefully, this
discord will be addressed eventualy.

The CTSis shared by the compilers, tools, and the runtime. Compiler vendors can write compilers and tools targeting
the runtime. The runtime enforces the rules defined by CTS when managing types.

113

Under CTS, atypeis defined as the unit that encapsulates a dataset and defines possible operations on the dataset. A
type can have methods as well as other members such asfields, properties, and events. C# classes and structures are

examples of types.

An important aspect of CTSisthet dl types are ultimately inherited from Syst em bj ect , aclassdefined inthe
BCL. This guarantees that every instance of every type supports the methods provided by CTS. Table 4.1 describes
some of the important methods.

Table 4.1. Public Methods of Syst em (bj ect

Method Description

Get HashCode Returns a hash value

Equal s Checks if two objects are the same

Finalize Method called by the common language runtime when the object is about to be
destroyed

Get Type Returns the type of the object

Menber wi seCl one |Makes a shallow copy of the object

ToString Returns a string representation of the object

Method Get HashCode returns a 32-hit integer that is suitable for use in data structures such as hash tables. The
default implementation returns a value that is guaranteed to be the same for the same instance. However, it is not
guaranteed that two different instances have different hash codes or two objects storing the same vaue have the same
hash code. Thisimplementation is not particularly useful for hashing. Therefore, derived classesthat can beused in

hash tables should override Get HashCode and provide a more suitable implementation. For example, class
System St ri ng overides Get - HashCode such that if two instances of the Syst em St ri ng classcontain

the same gring, the returned hash code is the same.

Method Equal s checksif two objects are the same. The default implementation of Equal s checks objects by
reference; that is, whether two references point to the same object. However, any derived class can override this
method to specify its own equaity condition. For example, the Equal s method of Syst em St ri ng returnstrue

for any two instances of a string that contain exactly the same characters in the same order.

If Equal s deems two objects equa, then agood rule of thumb isthat Get HashCode on the two objects be equal
aswel. Therefore, if you override Equal s on atype, you should (although not required) also override
Cet - HashCode. The C# compiler, for example, will generate awarning otherwise.

Method Fi nal i ze isautomaticaly invoked by the common language runtime when the object is about to be
destroyed. The default implementation of Fi nal i ze does nothing. However, aderived class can override this
method if need be. Thisistypicaly done to free any resources the object is holding or to perform some other cleanup
operations on the object.

Note that C# does not let you override the Fi nal i ze method directly. However, you can implement a destructor on

your classto express your findization needs, as shown here;

cl ass Foo {

114

~Foo() {
/1 inplenment your cleanup code here

During compilation, the compiler converts this destructor to Fi nal i ze method. In the process, the compiler aso
guarantees that the Fi nal i ze method for the base dlass, if any, isinvoked.

Method Get Ty pe returns an instance of the Syst em Ty pe dlass, which can be used to obtain metadata
information (e.g., list of methodsin a class) about the object. This method cannot be overridden.

Method Menber wi seCl one creates and returns a copy of the object it is caled on. We revisit this method when
we discuss deep versus shallow copy.

Findly, method TOSt r i ng returns the string representation of the object. The default implementation returns the
fully qudified name of the type the object belongs to. For example, if aclass Bar is defined under a namespace Foo,
then ToSt ri ng onaningance of Bar returns FOo. Bar by default. However, any derived class can override
ToSt ri ng and construct amore sensible string.

Operator Overloading in C#

When you compare two objects using C#'s == operator, do not expect that Cbj ect . Equal s will beinvoked. There
is no relaionship between the two. However, C# specifies away to overload operators similar to that of C++. The
following code excerpt shows how to overload operator ==:

cl ass Foo {
private int mVal ue;

static public bool operator==(Foo |eft, Foo right) {
return (left.mValue == right.mVal ue);

With this change, when you compare two instances of class Foo as shown here, then the overloaded operator gets
invoked:

Foo x = new Foo();
Foo y = new Foo();

it (x ==y) {

115

Generdly, when you overload the equals operator, it isagood practice to overload not equals (! =) aswell.

Behind the scenes, the C# compiler expands the overloaded equals operator asop_Equal i t y, aBCL-defined

standard method name for comparing two vaues. The framework SDK defines dl possible operator overloads, their

equivaent BCL method names, and overloading usage guiddines. Table 4.2 shows some common overload operators.

Table 4.2. Some C# Overload Operators

Operation C# Operator Symbol BCL Method Name
Equals == op_Equality

Not equals I= op_lnequality
Bitwise (binary) And & op_Bitw seAnd
Logical And && op_Logi cal And
Bitwise (binary) Or | op_Bitw seOr
Logical Or | op_Logi cal Or
Logical True True op_True

Logical False Fal se op_Fal se

Sample project Oper at or Loadi ng demonstrates the behavior for many overload operators.

Beware of Overloading & AND | Operators

4
—
—
—_—
—_—
—

Congder the following C# code excerpt:

If (x & y) { // logical and

Under .NET, the behavior of thislogica and can be represented as follows:

T.op_False(x) ? T.op_True(x) : T.op_True(T.op_Bitw seAnd(x,Vy))

The operation firstinvokesop_Fal se on x. If x isfdse then'y issmply ignored. If X is

true, however, then the codecalsop_Bi t Wi seAnd onx andy andthencdlsop_Tr ue on
theresult of op_Bi t Wi seAnd. What thismeansisthat evenif x andy are true when tested
individualy, it is possible that (X && vy) may still return false. Likewise, if y isfase, (X &y)
may ill return true. It al dependson how op_Bi t Wi seAnd isdefined.

Similarly, the behavior of the logical or operation can be represented as follows:
T.op_True(x) ? T.op_True(x) : T.op_True(T.op Bitw seO(x,Yy))

The bottom lineis that you have to be especidly careful when defining op_Bi t wi seAnd

116

andop_Bi t wi seOr when creating anew type.

Common Language Specification

Although CTS provides the base types that dl languages can use, not dl base types are intended to be supported by al
programming languages. For example, Visud Basc .NET does not support unsigned datatypes. Depending on the
specifications of a programming language, the compiler vendor may support only the subset of CTS types needed by

the language.

The CLSis an agreement between compiler vendors and .NET Framework designers. It defines the minimum set of
features a .NET-compliant compiler should support. Among other things, the CLS dictates the subset of CTS
datatypes that are intended to work across al .NET languages and a set of usage conventions. Whereas CTSiswide
enough to alow many festures so that languages can implement any fegture they want, CLS is narrow enough to
alow just those language features needed to support cross-language integration. Table 4.3 lists CTS-defined base

datatypes dong with their C# datatype and CL S compliance.

Table 4.3. C# Primitive Datatypes

BCL Type Description C# Type |CLS Compliant?
Syst em Bool ean |A trueffalse value bool Yes
System SByt e 8-hit signed integer sbyte No
System Byt e 8-hit unsigned integer byte Yes
Syst em Char 16-bit Unicode character char Yes
System I nt 16 16-bit signed integer short Yes
System Ul nt 16 |16-bit unsigned integer ushort |No
System I nt 32 32-bit signed integer i nt Yes
System Ul nt 32 |32-bit unsigned integer ui nt No
System | nt 64 64-bit signed integer | ong Yes
System Ul nt 64 |64-bit unsigned integer ul ong No
System Si ngl e |IEEE 32-bit float f | oat Yes
Syst em Doubl e |IEEE 64-bit float doubl e |Yes
Syst em Deci nmal |96-bit monetary type (used in financial calculations) deci nal |Yes
System String |String of Unicode characters string |Yes
System (bj ect Root system class obj ect |Yes

Use CLS-Compliant Datatypes

117

¢ Whenever possible, use CL S-compliant datatypes (unless cross-language interoperability is not

: important for your needs).

To ensure that your code isin compliance with CLS, add the following line to any of the source
file used in building your assembly:

[assenbl y: Syst em CLSConpl i ant (true)]

With this change, the compiler flags an error if it finds code that is not compliant with CLS,

Note that CLS compliance is meant only for public and family members. As private members
are never exposed to any other type, they need not be compliant.

Here is the code excerpt that shows how an assembly based on Visua Basic .NET can make a cross-language method
cdl into a C# based assembly.

/'l Project CrossLanguage

/1 File Consol eGeeting.cs
/1 Conpile as: csc.exe -t:library Consol eG eeting.cs
nanmespace MyGreeting {
public class Consol eGeeting {
private String muser Nane;

public void Geet() {
Consol e. WiteLine("Hello " + m.userNane);

public String UserNane {
set {
m user Nanme = val ue;

}
get {
return muser Nane;

" File M/VBApp. vb
" Conpile as: vbc.exe -t:exe -r:Consol eGeeting.d | M/VBApp. vb

118

| mports MyGreeting
Modul e MyVBApp
Sub Mai n()
Di mobj As New Consol eG eeting()
obj . User Nane = "Jay"
obj . Greet ()
End Sub
End Modul e

Value Types and Reference Types

Another important aspect of the CTS isits classfication of types. The CTS classifies typesinto two broad categories
vaue types and reference types. There are two mgjor differences between these types:

1. Storage: A vauetypeinstanceis created on the stack and areference type instance is created on the heap
(managed heap, more specificaly).

2. Assignment: When avaue typeinstance is assigned to another instance (of the same type), the second
instance gets a duplicate copy of the first instance's data. In case of areference type, both the instances share
the same memory location.

Congder the following C# code excerpt:

System I nt32 a, b;
a = b5;
b = g

Datatype Syst em | nt 32 (i nt in C#) isof vauetype Therefore, when varigble a is assigned to variadble b, b
getsacopy of a. Theredfter, changing the vaue of a does not cause achangeinthevaueof b.

Under C#, classes and interfaces are dways that of areference type. Consider the following C# class.

public class Foo
{
public int x;

i
The following code excerpt demonstrates how the assignment operation works for areference type:

public static void Test(Foo a, Foo b) {

a.x = 5;

b.x = 10;

b = a;

Console. WiteLine(b.x); // will display "5"
a.x = 20;

Consol e. WiteLine(b.x); // will display "20"

119

As can be observed from the test, once a is assigned to b, changing the contents of a automaticaly reflect in b. This
is because the assignmernt operation just assigned the reference (the memory location) of a to b.

Under C#, ast r uct definition isawaysthet of avaduetype Hereisan example:

/1 Project Val ueType

struct Point {
public int x;

public int y;
H
public static void Min()
{
Point a, b;
/1 Al the fields of a value type variable have to be
/] assigned a val ue before the variable can be used
a.x = 10;
a.y = 20;
b = a;
Console. WiteLine("Point bis ({0},{1})", b.x, b.y);
}

Note that, unlike reference type ingtances, it is not necessary to ingtantiate a value type using the new operator.
However, if not ingtantiated using the new operator, the vaue type variable has to be assigned a vaue before it can be

used. Otherwise, the compiler generates an error.

To identify a datatype as avalue type, the CTS requires thet the type be derived from Syst em Val ueType. This
class overrides the virtua methods Equal s, Get HashCode, and ToSt r i ng from its base class,
Syst em Obj ect , to provide more appropriate implementation for value types.

Notethat Syst em Val ueType internaly uses Reflection when overriding the virtua methods. Using Reflection
is performance intensive. Moreover, the default implementation of Get HashCode just returns the hash code of the
first non-null field of the value type. Therefore, it is highly recommended that each vaue type definition provideits
own implementation of these methods.

The following code excerpt illugtrates this idea:

/1 Project Val ueType

120

struct Point {
public int x;
public int y;

public override bool Equal s(Coject obj) {
if(!(obj is Point)) {
return fal se;

Point p = (Point) obj;
return ((this.x == p.x) & (this.y == p.y));

public override int GetHashCode() {
return (this.x ~ this.y); // a sinple schene

}

public override string ToString() {
strings ="(" +this.x +"," +this.y +")"
return s;

Implementing Value Types

Al s Whenever possible, define your own implementation of Equal s, Get HashCode, and

: ToSt ri ng for vaue type definitions.

Boxing and Unboxing

It is possible, and sometimes necessary, to convert between vaue types and reference types. The converson of avaue
typeto areference typeis caled boxing and the conversion of areference type to avaue typeis cadled unboxing. The
following code excerpt illugtrates this idea:

/1 Project Boxi ngUnboxi ng

public static void Min()
{
int i =10; // "int" (SystemInt32) is value type
Qbject o; // "object" (System hject) is reference type

121

o = (object) i; // Boxing "i"
int j = (int) o; // Unboxing "o" to integer

Consol e. WiteLine(j);

Boxing resultsin creating an object on the hegp and copies the value from the value-type object onto the object. This
makesit fairly performance intensive. It isagood ideato ingpect your code and remove unnecessary boxing
operationsif possble. Read Gunnerson's article on MSDN [Gun-013] to check how box-savvy you are. Also, read
[Gun-01b] to learn the performance implications of boxing.

Unboxing firgt checks if the source object is a boxed value of the requested vaue type. If the source object isnull or is
areference to an incompatible object, an | nval i dCast Except i on isthrown. Otherwise, the vaue from the

source object is copied into the destination vaue type object.

Sometimesit is a good ideato perform the compatibility check yoursdf before unboxing an object. Thisis exactly
what we did in our implementation of the Poi nt . Equal s method in the previous section

Let's now see what happens when a managed application is executed.

Microsoft Intermediate Language

The CLI aso specifies an environment for executing the code targeting the CLI. The environment is cdled the Virtud
Execution System (VES). Among other things, the VES defines a hypothetica machine with an associated machine
mode and indructions. The machine ingructions are defined in alanguage cadled Common Intermediate Language
(CIL). A detailed description of the CIL instruction set can be found in the ECMA specifications.

Asyou may have guessad, Microsoft's implementation of CIL is called Microsoft Intermediate Language (MSIL).
Consder the following C# code to multiply two numbers:
public static int Multiply(int i, int j) {

int k=1 *j;
return k;

When this code is compiled, the compiler creates the following MSIL code in the generated assembly (recal that you

can usethe IL disassembler to view the contents of an assembly). | have added comments to each ingtruction for better

readability.

. met hod public hidebysig
static int32 Miltiply(int32 i, int32j) cil nmanaged

122

.maxstack 2 ; maxi numnunber of itens this
; method will push on the stack

.locals (int32 V_.0) ; local variables this nethod needs
; VOis the first local variable

| darg. 0 ; push the first argunment onto the stack

| darg. 1 ; push the second argunent onto the stack

mul ; multiply the two argunents

stloc.0 ; pop the result fromthe stack to V.0

[dloc.0 ; push V.0 to the stack (return val ue)

ret ; return fromthe method

} /1 end of nethod MyApp:: Miltiply

Note that while traditiona machine language ingtruction sets use registers and stacks, the MSIL ingtruction set uses
only the stack. In the above code, the two arguments are pushed onto the stack and the rul t i pl y instructionis
cdled. Thisinstruction pops the two vaues from the stack and pushes the result back onto the stack. The code then
pops the value from the stack to the local variable. The local varigble is pushed back to the stack asthe stack isaso
used to place the return value of the method. Findly, the method returnsto its caler.

Under MSIL, copying vaues from memory to the stack isreferred to as loading and copying vaues from the stack to
memory is referred to as storing.

More information on the IL instruction set can be found in the ECMA CLI documents a http://www.ecma.ch/. A copy
can aso be found under the subdirectory "Tools Developers Guide" in the directory where the NET Framework SDK
isingaled.

Protecting the Intellectual Property

Given that it is S0 easy to disassemble an assembly, it seems feasible for someone to reverse
— I engineer thelagic of your program. Is there any form of protection for your code?

Microsoft is currently working on abasic obfuscator that will mangle al non-public namesin
an assembly. Although not afool-proof scheme, it will at least make disassembled programs
harder to comprehend.

Hello World in IL

It is possble to write a program in MSIL dthough most programmers would prefer using a higher level language. The
following MSIL code shows how to display "Hello World!" to the console:

/***

Hello World programwitten in MSIL
NOTE: Anything that starts with a period is

123

a directive for the assenbl er

***/

/1 This nodule is the hol der of assenbly nanifest
.assenbly hello {}

.nmethod static public void MyMain() cil managed

{
/1 NMark this nmethod as the entry point
.entrypoint
/1 Push a string onto the stack
[dstr "Hello Wrld!"
/'l I nvoke System Consol e. WiteLine
call void [nscorlib]
System Consol e: : WiteLine(class System String)
/1 return fromthe method
ret
}

Theent r ypoi nt directiveinformsthe IL assembler to mark the specified method as an entry point. When the
execution engine loads the application, it starts executing code from the specified entry point. When we write codein
ahigher-level language such as C#, the compiler automatically assumes that the entry point is static method named
Mai n.

Obvioudy, the entry point is needed only for an EXE-based assembly. For a DLL-based assembly, the application
responsible for loading it dictates what method(s) to call.

The framework provides atool called IL assembler (i | asm exe) for assembling MSIL files. Assuming the above
codeisstored inafileHel | oWor | d. i |, thefollowing command line will generate an assembly named
Hel | oWor | d. exe.

ilasmexe HelloWbrld.il

This concludes our short introduction to MSIL. Let's now examine the process of executing managed code.

Managed Code Execution

To load and execute an assembly, the common language runtime has to be hosted within a processfirs. The NET
Framework provides APIsto let an gpplication host the common language runtime. Some examples of such host
applications are ASP.NET, SQL Server .NET, and so on.

124

An EXE-based assembly contains a small piece of bootstrapping code that points to a function exported by the NET
runtime, named Cor ExeVai n. When such an assembly is executed, the OS creates a process and executes
Cor ExeMai n. Thisfunction in turn loads the common language runtime into the process and transfers contral to it.

Using astandard PE file mechanism to bootstrap the common language runtime is a clever technique on the part of
Microsoft. It ensures that many things "just work." For example, to run the application, you can double-dick an
application in the Explorer window or enter its name at the command line.

Thefunction Cor ExeMai n loads the EE, reads the assembly's manifest, and loads the module containing the entry
point for the application. From this point, the common language runtime (the EE, more specificaly) goes through the
following genera steps:

Metedata validation

Code verification

Compilation of MSIL code to native machine code
Execution of the compiled code

A w NP

Figure 4.3 shows the overal process of how amethod is compiled and executed.

Figure 4.3. Method execution.

> A Method

Inveked
Mathed
Compild?
i e Medule
Do s loaded?,
T Compile ’
[Wenify/ Validok IL] e LG . o
a5
-
load Module,
Validate
* Matadota
Execute Mathed
[Prewide iwntime
sarvices|

As the code executes, it may make references to other types. The common language runtime loads the module
containing the referenced type, if it has not been loaded dready, asillustrated in Figure 4.3.

Once a module has been loaded and vaidated, and the reference to the type has been resolved, the runtime is ready to
execute the type's method. However, before this is done, the runtime has to take care of afew things:

125

The MSIL code for the method has to be vadidated. For example, the MSIL code should not contain any
invalid opcodes.

The MSIL code has to be checked for unsafe code. Thisis called code verification.

Finaly, the MSIL code for the method has to be converted to the native machine language instructions. This
on-the-fly converson isreferred to asjudt-in-time (AT) compilation.

We will cover these stepsin more detail shortly.

After the MSIL indructions have been converted to native machine language ingtructions, the common language
runtime steps aside and |t the native machine code execute. While the code is executing, the common language
provides any runtime service that is needed such as automatic memory management, enhanced security,
interoperability with COM components and so on.

The process of loading a module when needed, metadata vaidation, verification, compilation, and then executing the
native code is repeated until the execution is complete.

It isinteresting to note that amodule isloaded as a side effect of referencing a type contained in the module. If some
types within an assembly are placed in amodule such that a particular execution path never references any of the
typesin the module, then the runtime will not load the module. By bundling least used typesin a separate module, you
can improve execution performance, especidly if the assembly needs to be downloaded over adow link. If the
module is not used, it will not be downloaded.

Metadata Validation

As each module is loaded, the common language runtime performs a set of tests on it to ensure that the file format and
the metadata are self-consistent. This set of testsis referred to as metadata validation. The ECMA specifications
define what condtitutes valid metadata. As of this writing, the specification congsts of about 500 rules.

Note that MSIL code is not validated when the module isloaded. Thisis done on a per-method basis henthe
method is about to be executed. As aresult, if amethod is never executed, its MSIL code is never validated.

Code Validation and Verification

Once amodule has been loaded and validated and the reference to the type has been resolved, the common language
runtime is ready to execute the type's method. However, before this is done, the common language runtime hasto
vdidate and verify the MSIL code.

Vadidation checksif theMSIL codeis consgtent. For example, the code should not contain any invaid MSIL
ingruction. This can happen, for example, asaresult of abug in the front-end compiler. If the vdidation fals, the
runtime throws an exception.

Verification examines the MSIL code and the metadata to ensure that the code accesses memory locationsit is
authorized to access and that the code calls methods only through properly defined types. Such type sdfety is
necessary to ensure that objects do not cause any inadvertent or maicious corruption of memory or other important
resources. Using pointers, for example, generates potentialy unsafe code.

126

During the verification process, the code is examined against awell-defined set of type-safe rules. The code is deemed
unssfeif it falsany of therules

Do not confuse unsafe code with unmanaged code. Only managed code is verified for type safety. If the code is unsafe,
it il remains managed code. Unmanaged code, on the other hand, is the code that the runtime has no control over,
such as native cdls to the platform.

Verification ensures that each type is only asked to execute vaid operations. It is not possible for verification to check
runtime conditions such as array bounds violation. Such runtime conditions are handled by the runtime, not

veification.
Verification Is Limited
:..__1 It is quite possible that your code may fail the verification test even though it is perfectly safe

E to use. Thisis dueto the limitations of the verification process. Moreover, some languages do
not produce verifiably type-safe code, which causes the verification to fail.

Under C#, if you wish to write unsafe code, you need to explicitly scope the code using akeyword unsaf e, as
shown in the following example:

/1 Project UnsafeCode

public void GetVal ueByRef (ref int value) {
int retValue = 0;

unsafe {
byte* p = (byte*) &retVal ue;
p[O] = 10;

}

val ue = ret Val ue;

Keyword unsaf e can aso be applied at the method level or the type level. Here are some examples:

/1 Project UnsafeCode

public class Foo {

unsafe public void GetVal ueByPointer(int* val ue) {
*val ue = 20;

}

127

public unsafe class Bar ({
private int* mCount = null;

The Microsoft C# compiler produces verifigble type-safe code by default. Y ou need to explicitly instruct the compiler
to generate unsafe code. Thisis done using the - unsaf e switch, as shown in the following command line:

csc.exe -u nsafe MyCode. cs

Recdl that verification is performed on amethod that is about to be executed. During verification, if any unsafe code
is encountered, the runtime throws an exception of type Ver i f i cat i onExcept i on (namespace

Syst em Secur i ty). Theunsafe code is not executed.

The only way to run unsafe code is to force the runtime to skip verification on the assembly. The assembly hasto
request for a security permission called Ski pVer i fi cat i on and the administrator has to set the security policy

on the local machine such that the assembly is granted this permisson. We will look at thisin Chapter 9 on security.

By default, dl the assemblies on the loca machine are granted full trust (which indludesthe Ski pVer i fi cati on
permission). Files downloaded over the network (Internet or intranet) have a reduced set of permissions.

Offline Verification

It isaso possible to vaidate and verify your assembly without executing it. The framework provides atool caled
PEVerify (peveri fy. exe) to check if the MSIL code and the metadata in the assembly meet the type-safety

requirements. The following command line, for example, checksif Foo. dI | istype-safe:
peverify. exe Foo.dl|
Check the SDK documentation for the command line switches for this tool.

Note that out of dl the metadata vaidation rules defined in the ECMA specifications, PEVerify checks only the
important ones. Perhaps the next version of the NET Framework will have amore e aborate coverage.

Also note thet there is an important behaviord difference between PEV erify and the I T compiler. The JT compiler
verifies only those methods that are executed whereas PEV eify verifies dl the methodsin the assembly. It is
recommended that you test your assemblies with PEV erify before you ship it.

JIT Compilation

Once the method to be executed has been vaidated and verified, the MSIL code for the method has to be converted to
the native machine language code; thet is, code that is specific to the local maching's CPU architecture. This on-the-fly
converson isreferred to as JT compilation.

128

JT compilation mekesiit possible to develop the code once but run it on different hardware platforms. All that is
needed is the availability of aJT compiler (or the JTter, asit is cdled) for the target CPU architecture. Of course, if
your managed code makes native calls to the specific OS platform, then your code might not be able to run on another
platform.

Asthe JT compiler iswritten for a specific CPU architecture, it can potentialy perform dl the hardware- specific
optimization, thus producing a performance-efficient native code.

Note that the I T compiler compiles code only for the method that is about to be executed, not the type's module or the
assembly. Asamatter of fact, if atype's method is never cdled during the execution, the method's MSIL code is never
compiled, saving both time and memory.

The scheme for activating J T compilation is very smple and efficient. When atypeis loaded by the common

language runtime, the loader creates and ataches a stub to each of the type's methods. On thefirst call to the method,
the stub passes control to the JT compiler. The JT compiler convertsthe MSIL code for that method into native code
and patches the stub to point directly to the native code. As aresult, subsequent cals to the J T-compiled method
proceed directly to the native code.

In some cases, the JT compiler may dso expand the method inline, that is, within the calling code. This reduces the
overhead associated with making acal.

Native-Code Assemblies

The JT compiler generates native code that staysin memory only for the specific process. The generated code is not
retained to be used from one run to the next.

It isaso possble to compile the MSIL code to native code before executing an assembly, perhaps during assembly
ingdlation. This pre-jitting results in reduced application startup time and improved runtime performance, asthereis
no need to creste and attach stubs to each type's methods during run-time or to compile the methods dynamicaly.

The framework provides atool caled the Native Image Generator (ngen. exe) to compile an assembly. Thistool
not only creates a native image for the gpecified assembly but dso ingtals the assembly into a gpecid region of the
runtime cdled the netive image cache. The following command line, for example, compiles the assembly

Consol eGreet i ng. dl | into anative image and adds the image to the native image cache:

ngen. exe Consol eG eeting. dl |

Note that even though the native image has been ingtaled in the native image cache, the source assembly hasto be
present on the machine in the same location where it was origindly compiled from. Thisis because the runtime
checks whether the source assembly has been modified with respect to its native image. If so, then the runtime does
not use the "sd €’ native image, but slently fals back to the T compilation.

The native image is consdered sae if the source assembly has been re-created, if the common language runtime has
been modified, if the assembly bindings have been changed by way of configuration, and so forth.

129

The NET Framework ingtalls afew assemblies as the native images. This can be observed from the GAC viewer.
Another way to get alist of currently ingtalled native images on amachineisto use- showswitchon ngen. exe, as

shown here:

ngen. exe -show

To remove an image from the native image cache, you can usengen. exe with - del et e switch. You can aso use
gacuti | . exe withtheswitch - ungen, asshown in the following commeand line

gactuil.exe ngen Consol eGeeting

Rebasing Executables

— Under Windows, each executable stores a vaue that identifies the starting address where the

—_— executable should be loaded in a process memory. However, to avoid any address overlaps, the
OS may haveto load the executable a a different location. This relocation resultsin increased
load time for the executable. This relocation penaty can be avoided if each executable that will
be loaded within a process is specified a base address that avoids any |oad-time address
collisons

Under .NET, base-address collision is not a problem for assemblies that contain IL code. Recall
thet the runtime "extracts' the MSIL code from the assembly and loadsiit into the execution

engine.

Native-code assemblies, however, are loaded into the process memory space. Therefore, itisa
good ideato properly base such assemblies before compiling them into native code. The C#
compiler creates executables with the base address of 0x00400000. However, this default
behavior can be customized by using - b aseaddr ess compiler switch.

Note that native-code images can be twice as large as the corresponding M SIL-code image.
The exact factor depends on the content.

Also note that most of the .NET assemblies are loaded into 0x79000000 to 0x7D000000 range.

Needlessto say, if your managed code interacts with any unmanaged code (DLLs and COM
servers), these unmanaged executables should aso be rebased properly.

Code Execution

After the MSIL instructions have been converted to native machine language instructions, the common language

runtime steps aside and lets the native machine code execute. While the code is executing, the common language
runtime provides any runtime service that is needed, such as automatic memory management, enhanced security,
interoperability with COM components and unmanaged code, and so on.

130

In this chapter, we look a perhaps the most important service that the runtime provides autometic memory
management. Other services such as security, interoperability, and so forth, are covered in later chapters.

Automatic Memory Management

Every program stores instances of datatypes in memory. This per-instance memory can be dlocated either in the data
segment, the stack, or the hegp. Typically, static variablesin a program are stored in the data segment and local
variables to amethod are stored on the stack. The compiler inserts gppropriate logic in the output code to ded with
memory management of data- segment-bound and stack-based types. For heap-based types, a programmer hasto
explicitly ded with memory management issues. Here are the typical steps a programmer goes through to deal with
heap- based types:

1. Allocate memory of proper sizefor the instance of the type. Under C++ and C#, for example, this can be
done using the operator new.

2. Initidize the indance. Member fields of the type are assigned avaue. Any system resources that the
instance needs, such as opening afile or a network connection, are aso acquired. Under C++ and C#, this
can be done either in the constructor of the type or in a different method.

3. Usetheinstance (and the acquired resources).

Dispose of the resources, for example, close the file or the network connection opened previoudy.

5. Freethe dlocated memory. Under C++, this can be done using the operator del et e.

Humans make mistakes. While programming, it is quite possible that someone will forget to call Step 4. C++ hasa
neat solution for this. When del et e iscaled on an object, the compiler ensures that the class's destructor isinvoked
first before the memory is freed. If the digposing logic is moved in the destructor, Step 4 is automatically taken care of
when Step Siscalled.

If you forget to cal Step 5, not only will it result in amemory lesk, but it might also cause the resources not to be
disposed off.

This problem has plagued programmers forever. A plethora of tools came into existence to detect such memory lesks
in the program. Many "smart pointer” [Ede-92] techniques were designed to ensure that Step 5 is automatically
performed. A typica smart pointer implementation keeps count of the number of outstanding references on the object.
When the lagt reference goes away (implying that the object is no longer in use), the object is deleted.

.NET addresses this problem in a different way. In Chapter 2, | touched on the noticesble absence of adel et e
operator in C#. There is no need to delete an object. The runtime automaticaly detects whether the object isno longer
in use and deletesit. This mechanism is caled garbage collection (GC). Let's see how it works.

It isworth mentioning that GC is not anew technique. There are many GC agorithms in use today, but our focusison
the GC adgorithm used under .NET.

Also note that what | cover here are some important aspects of memory management. For more intricate details,
please read Richter's articles [Ric-00a] and [Ric-00b] in MSDN Magazine.

131

Garbage Collection

When the common language runtime is initidized in a process, it reserves a contiguous region of memory space on
the process's hegp. This memory region is caled the managed heap.

When an gpplication creates an object using the new operator, the run-time assigns the required size on the managed
heap to the object. As each new object is created, a contiguous memory location is assigned to the object.

This smple mechanism makes dlocating an object on the managed heap very efficient. In fact, the operation is asfast
as dlocating memory on the stack.

Note that even though abig chunk of memory isreserved on the hegp initidly, it is the virtud memory of the process,
not the actua storage. The storage is committed as necessary when objects are created at runtime. The implication is
that the working set size of the processis relaively smdl during initidization but may grow as objects are crested.

As objects are assigned memory on the managed heap, the hegp sartsfilling up. What happens when anew object
needs to be cresated but there is not enough space available in the managed heap?

Thisiswhere the GC kicksin. Hereis what it does:

1. Withthe help of the runtime, the GC firgt congtructs alist of objectsthat are in use. The rest of the objects
are garbage and the memory occupied by them is available for reuse.

2. The collector then compacts the memory, effectively removing the "gaps' in the hegp caused by the garbage
objects. The nongarbage objects are shifted in memory as necessary. After the collection, al the used objects
are placed contiguoudy at one end of the hegp. The remaining space is available for reuse.

3. Asthe nongarbage objects have been shifted in the memory, dl pointers to those objects have become
invaid. The collector fixes these pointers to paint to the new locations.

4. Thenew operaion istried again and the memory request is satisfied.

It isinteresting to know how the list of nongarbage objects s crested. Each gpplication has a set of root objects, or
objects that the GC can use as a starting point to detect other objects being used. For example, dl the globa and dtatic
objectsin an application are considered root objects. Loca variables and method arguments on a thread's stack aso
condtitute as root objects. Finaly, any CPU register containing pointers to objects in the managed hegp isadso
consdered part of the gpplication's roots. The set of root objects may change as execution proceeds. With some help
from the JT compiler, the runtime maintains the list of active roots.

When the garbage collector starts running, it walks the active roots and builds a graph of al objects reachable from
the root. These are the objects that arein use. The rest of the objects are garbage and hence can be collected.

Note that an object is a candidate for collection as soon asit is no longer used. For example, variables that go out of
scope are dl candidates for collection. Even within the scope, if the execution has passed the last use of avariable,
such avarigbleis dso acandidate for collection.

Debugger Changes the Behavior

132

g When an gpplication is being debugged, the runtime extends the lifetime of a variable even
E after it no longer is used within the scope. This gives you a chance to inspect the objects within
the debugger.

Performance Considerations

Because of its nature, GC is a costly operation. Depending on the gaps Ieft in the managed heap, shifting memory
could be quite expensive. An even bigger impact is for multithreaded applications. As memory is being shifted around,
the runtime has to suspend all other threads to ensure that objects do not point to invalid memory locations.

On the positive side, though, the GC agorithm uses a few different mechanisms to keep threads running aslong as
possible and to reduce overhead. These mechanisms include fully interrupting the code (on each thread), hijacking a
thread, and letting the J T compiler introduce additional GC-related code at some safe points within amethod. The
agorithm aso employs some other techniques to take advantage of multiple processors, if available. A detailed
description of these techniques can be found in [Ric-00b].

Note that al these mechanisms for performance improvement are transparent to your gpplication.

GC Performance Counters

_...._1 The runtime provides many performance counters that show the status of managed memory for

E a specific process. These counters are grouped under the. NET CLR nenor y performance

object.

By default, the GC takes place when an object is being created and there is not enough space left in the managed heap.
However, it is aso possible to programmatically force a GC within the gpplication. The framework provides aclass,
GC (namespace Sy st en), to ded with GC. Thefollowing line of code forces a GC:

CC. Col l ect ();

Generdly, it is best to |et the garbage collector run on its own accord. However, as your application knows more
about its behavior than the run-time, you could call this method at some strategic placesin your code. For example, it

would be a good time to force GC when your application is sitting idle, perhgps waiting for the user's input.

By defaullt, the runtime creates a separate threed to run the GC concurrently. However, it is possible to specify the
runtime to run the GC on the same thread as the application. Thisis done by means of configuration setting
gcConcur r ent , asshown here:

133

<confi guration>
<runti nme>
<gcConcurrent enabl ed="fal se"/>
</runti me>
</ configuration>

Running GC concurrently reduces performance. For applications based on auser interface, it makes senseto run GC
concurrently so the application does not appear to pause. However, for a background application not dependent on the

user interface, it is advisable to turn off concurrent GC.

Generations

The GC dgorithm has many fegtures to improve collection performance. One such feature is called generations,
which basad on the following assumptions:

The newer an object is, the shorter its lifetime will be. For example, variableslocd to amethod are created
once the method is entered and are of no use once the method is exited.

Newer objects tend to have a strong relationship with each other and are frequently accessed around the
sametime.

Compacting a portion of the hegp is faster than compacting the whole heap.

Many studies have demonstrated that these assumptions are valid for alarge set of existing gpplications.

Under .NET, the managed hegp islogicaly (not physicaly) grouped into zones caled generations. The first rlease
of .NET runtime contains three generations (numbered 07, inclusive) and most likely will stay the same for future
rel eases.

When an object is created, it is stored in generation 0. Simply stated, objects in generation 0 are young objects and
have not been touched by the garbage collector.

As more objects are created, they are placed in generation 0. When generation O fills up, aGC is performed. Those
objects that survive the collection are considered older and are moved to generation 1. After the collection, generation
Oisempty.

When the next GC occurs, survivors from generation 1 move to generation 2 and survivors from generation O moveto
generation 1.

As generation 2 is currently the highest generation, when the next GC occurs, survivors from generation 2 smply stay
there.

The GC classprovidesaCGet Gener at i on method that can be used to examine the generation of an object. The
following code excerpt demonstrates how an object moves up the generation ladder:

/1 Project GCGenerations

public static void Min() {

134

oj ect o = new Object();
Consol e. WitelLine(GC. Get Generation(o)); // displays O

CC. Col l ect ();
Consol e. Wi telLi ne(GC. Get Generation(o)); // displays 1

CC. Col l ect ();
Consol e. Wi telLi ne(GC. Get Generation(o)); // displays 2

How does generationd GC improve performance? When the GC occurs, the garbage collector may choose to examine
only the objectsin generation 0 and ignore the objects in higher generations. After dl, the newer an object is, the
shorter itslifetime is expected to be. Collecting and compacting just generation 0 objectsislikely to reclaim

significant amount of gpace from the hegp and be faster than examining al the objectsin al generations.

Of course, if collecting generation O doesn't provide the necessary amount of storage, then objectsin generation 1 can
be collected. Failing this, objectsin generation 2 can be collected.

Another performance benefit comes from the statigtical likelihood that newer objects have a strong relationship with
each other and are frequently accessed around the same time. As new objects are alocated contiguoudy in memory,
you gain performance from locality of reference. It is highly likely thet adl the new objects can resdein the CPU's
cache. Accessing the CPU's cache is much faster than accessing RAM. The application will be able to perform most
of its manipulation without having cache misses (which forces RAM access).

It isdso possible to programmaticaly force collection at a higher level. Class GC provides an overloaded version of
Col | ect that takes the generation number as a parameter. The following line of code, for example, forcesa GC a
generation 2.

CC. Col |l ect (2);
A collection a generation 2 automaticaly implies a collection at generations 1 and 0.
View Generation Status

¢ NET provides performance counters to view the number of times objects are collected at

! W :vaiousgmerationlevels

Finalization

135

GC manages memory, but not any other resources. Reed thet line again. It'simportant to understand that the GC can
release any unused memory but it cannot dedl with any other resources. If you have resources such as file handles that
are open, it is your responsibility to release such resources.

Congider the following code excerpt for example:

/1 Project Finalization

class M/File {

public MFile(String fileNane) {

/] Call native Wn32 APl to open a file
m handl e = CreateFile(fil eNane,...);

}
public String ReadLine() {

private IntPtr mhandle; // native Wn32 file handl e
}
class M/App {
public static void Main() {
MFile f = new M/Fi | e("Readne. Txt");
Consol e. Wi telLi ne(f.ReadLine());
}
}

Class M/ Fi | e opensafile handlein its congtructor using the native Windows API cdled Cr eat eFi | e. Wewill
look at invoking platform specific calsin alater chapter on interoperability.

WhenaMyFi | e object is callected by the garbage collector, the file handle that was opened never gets closed. If you
use such an object afew times, soon you start running short of file handles.

Fortunately, .NET provides afeature caled finalization that alows an object to clean itsdf up whenit is being
collected. Theroot system object, Syst em Chj ect , definesamethod called Fi nal i ze that aderived class can

override and provide its cleanup functiondity. The following is its prototype:

protected virtual void Finalize();

So, dl we need isto override thismethod in My Fi | e class and close the file handle, right? Well, not exactly! C#
doesn't let you override Fi nal i ze. The compiler flagsthis as an error. Instead, you need to use the destructor

semantics to implement your cleanup, as shown here:

136

class MyFile {

~MFile() {
C oseHandl e(m_handl e) ;

Under the hood, the compiler converts the destructor code to the Fi nal i ze method. Here is how the generated code
would look:

protected override void Finalize() {

try {

d oseHandl e(m handl e) ;
}inally {

base. Fi nali ze();
}

Note that in the generated code, the compiler dso insertslogic to invoke the base (parent class) typesFi nal i ze
method. The compiler does not let you cal basetype's Fi nal i ze method directly. Implementing a destructor isthe
only way to ensure that base type's Fi nal i ze iscalled.

Thef i nal | y dausein C# ensuresthat irrespective of the outcome of thet r y block, thecodeinthef i nal | y
block is dways executed.

How does findization work? When an object is being collected, the garbage collector seesthat the type has a
Fi nal i ze method and cdls the method.

C# Destructor versus C++ Destructor

P At first glance, a C# destructor looks very similar to a C++ destructor. However, they are two
— HF very different beadts.

Theinvocation of C++ destructors is deterministic. They are called when an object gets deleted
or when avariable goes out of scope. Under C#, there is no such determinidtic findization. Y ou
have no ideaa what point in your code the findizer will be invoked.

Under C++, the thread that invokes the destructor is determinigtic. Therefore, C++ destructors
can use thread- specific features such asthread loca storage. Under .NET, the findizer is
invoked by a specia runtime thread. Therefore, C# destructors should never use thread- specific
features.

Under C++, if you do not define a destructor, the compiler generates one for you. Under C#,
the compiler does not generate the destructor for you. Aswe will seelater, findization
under .NET is an expensive process and should be avoided if possible.

137

Under C++, the order of destructors is determinigtic. For example, if a class contains member
fields, the destructor for the class (the outer object) isinvoked before the destructor of member
fields (inner objects). In C#, the order of Fi nal i ze isnot guaranteed. The inner objects
might get finalized even before the outer object does. Therefore, the Fi nal i ze method must

never try to access any inner objects.

Although finalization seems pretty Smple on the surface, the internal workings of findization are not that Smple.
Essentidly, an object that hasaFi nal i ze method is placed in a separate data structure (called the Findlization
queue) within the managed heap. When a GC occurs, the garbage objects from the Finalization queue are moved to a
different queue called the Freachable queue. A specid runtime thread is dedicated to calling Fi nal i ze onadl the

objectsin the Freachable queue.

Finalization Gotchas

¢ Becauseof a separate dedicated thread handling the finaization, there are some things that you

g < shouldbeaware of:

Y ou should not use any thread- specific feeture in your findizer. It is not your thread.

Y our findlization code should be as quick to execute as possible. There are other
objects waiting in the queue behind you.

Y ou should avoid dl actions that would block the Fi nal i ze method, indluding any
thread-synchronization operations.

Richter's article [Ric-00b] isagood reference to understanding the internals of findization. For now, it isimportant to
know that invoking findization on an object is performance intensive and therefore should be avoided when possible.

So now you completdly understand that implementing Fi nal i ze (i.e.,, the C# destructor) should be avoided as
much as possible, however, your origina problem is still not solved. Y ou cannot leave the file handles open. What
possible choice do you have to force closing such opened resources?

Disposing Resources

A smpleway to clean up the object isto provide an additional method that the consumer of your type can explicitly
call. For typesthat "open” resources, amethod name such as Cl 0s e makes sense for closing the opened resources.

The following code excerpt illudrates this:
/1 Project D spose
public void dose() {

138

i f (1 NVALI D HANDLE VALUE ! = m handl e) {
G oseHandl e(m_handl e) ;
m handl e = | NVALI D_HANDLE_VALUE;

Although you can define amethod such as Cl 0se inyour dass, and it is quite appropriate, the framework formalizes
this notion of explicit cleanup of an object. A type that wishes to expose such functiondity must implement a
framework-defined interface, | Di sposabl e. Hereisits prototype:

interface | D sposable {
voi d Di spose();

The following code excerpt illustrates how our dass My Fi | e can be modified to support thisinterface:

/1l Project D spose

class MyFile : 1D sposabl e

public void D spose() {
if (I NVALI D HANDLE VALUE ! = m handl e) {
d oseHandl e(m handl e) ;
m handl e = | NVALI D HANDLE VALUE;

The dlient code can now explicitly cal Di spose to dispose of the resources.

Let'sback up alittle. The reason we are going through these extra stepsis to avoid findization. However, the findizer
codeis gl there. We haven't redlly fixed the actua problem. Let's take out the destructor that we defined. That
should fix the problem, right?

Our problem is not redly that we added afindizer on the dass. Our problem isthat findization is sill being done on
our object. If the client callsDi spose, it makes sense that the finalization be suppressed. Thisiswhy cdass GC
defines amethod, Suppr essFi nal i ze, to suppressfinaization on an object. Using this method, we can modify
our Di spose method asfollows:

/'l Project D spose

public void D spose() {
i f (1NVALI D_ HANDLE VALUE ! = m handle) {
d oseHandl e(m handl e) ;

139

m handl e = | NVALI D_HANDLE_VALUE;

}
GC. SuppressFinal i ze(this);

Now we have covered dl the bases. If the client cals Di spose, findization is suppressed. If the client forgetsto call
Di spose, the GC invokesthe findizer asusud.

Thereis now anew issue we need to consider. We have three methods, Cl ose, Di spose, andFi nal i ze, that
are doing pretty much the same thing. From a software engineering point of view, it makes sense that they dl cdl the
same method interndly. This gives us asngle point of maintenance. More lines of code dso imply more chances of
introducing bugs. For instance, look back at our implementation of CI 0s e. Even this method must cdll

Suppr essFi nal i ze, whichwedidnt.

Before we do that, there is a subtle difference between Di spose and Fi nal i ze that you need to be aware of.
Recdl that when Fi nal i ze isinvoked, itsinner objects may have dready been collected. The lifetime of these
objectsis managed by the garbage collector. Therefore, Fi nal i ze cannot touch these objects. However, the
garbage collector has no control over the resources that it doesn't manage, such asthe native file handlein MyFi | e.
Therefore, Fi nal i ze should dlean up only its unmanaged resources. As a matter of fact, if your class does not have
any unmanaged resources, thereis no need to implement Fi nal i ze.

Note that an unmanaged resource can be wrapped in a managed class, saving others from implementing findizers. For
example, for aclassthat dther inheritsfrom My Fi | e or usesthe MyFi | e type asamember fidd, thereis no need
for the classto implement Fi nal i ze onaccount of MyFi | e.

Avoid Finalize if Possible

e If your class does not have any unmanaged resources, do not implement Fi nal i ze onthe

g : class. Implementing Fi nal i ze for this case does not serve any rea purpose. Moreover, you

pay a performance penalty for doing so.

Di spose, onthe other hand, can and should clean itsinner objects and should call itsbase types Di spose (or
equivaent method), if available.

Based on this subtle difference, we can rewrite our methods as follows:

/1l Project ABetterD spose
class MyFile : |Disposable {

/1 Conmon resource clean-up inplenentation
protected virtual void D spose(bool disposing) {

140

i f (disposing) {
/1 ... dispose nmanaged resources
}
/1 ... dispose unmanaged resources
i f (INVALI D HANDLE VALUE ! = m handl e) {
C oseHandl e(m_handl e) ;
m handl e = | NVALI D_HANDLE_VALUE;

public void O ose() {
Di spose();

public void Dispose() {
Di spose(true);
GC. SuppressFinal i ze(this);

~M/File() {

Di spose(fal se);

This pattern of using ahdlper Di spose method that canbeused from | Di sposabl e. Di spose implementation
aswdl asfrom Fi nal i ze and any other method is generdly referred to asthe Di spose pattern.

Y ou can use this code as atemplate for designing a class that needs the digpose and finalize semantics.

Implement Dispose Along with Finalize

T Make it a habit to dwaysimplement Di spose onadassif youimplement Fi nal i ze on

: the class. Do remember to call Suppr essFi nal i ze withinyour Di spose
implementation.

Thereis asubtle problem if you implement Fi nal i ze withoutimplementing Di spose. A
class derived from such a class cannot dispose of the parent classfromits Di spose method.
There are only two waysto dispose of aclass ither cdl Di spose orcdl Fi nal i ze.
However, the parent class doesn't implement Di spose and the compiler won't let you call
parent classs Fi nal i ze directly. Theimplication of thisis that the child class should not call
Suppr essFi nal i ze fromitsDi spose. Othewise, the Fi nal i ze for the parent class
will get suppressed, resulting in aresource lesk.

141

Using | Di sposabl e Objects

Once aclassimplements| Di sposabl e, theusarsof thecdlasscan cal Di spose when done with the object. This
isillugtrated in the following code excerpt:

public static void Main() {
MFile f = new M/Fi | e("Readne. Txt");
Consol e. Wi telLi ne(f.ReadLine());
f. D spose();

Although this code works, there is adight programming issue here. Programmers have to remember to call
Di spose onan object, even in the face of an exception. For amethod with many return paths, it is easy to forget

cdling Di spose on oneof the return paths.

Now you have anew problem. You are relying on your clientsto cal Di spose on you. Whet if they forget to do s0?

Cit offers a better syntactic flavor for dealing with objects that implement | Di sposabl e. An object can be created
withintheusi ng scope asfollows:

/1 Project ABetterD spose

public static void Min() {
using (M/File f = new MyFil e("Readne. Txt")) {
Consol e. Wi teLine(f.ReadLine());

The compiler expands this to something like:

public static void Main() {

{
MFile f = new M/Fi | e("Readne. Txt");
try {
Consol e. Wi telLi ne(f.ReadLine());
}inally (
if (null '=1f) {
((1 Di sposable) f).Di spose();
}
}
}

142

All the code within theusi ng scopeismoved into thet 1y block. Once this code is executed, the code in the
final |y block isexecuted, ensuring that Di spose iscdledonan | Di sposabl e object that was successfully

constructed.

Note that the usi ng cause can be nested, making it possible to creste multiple | Di sposabl e objects.

Verifying If Dispose() Is Called

e If you haveimplemented Di spose aswel asFi nal i ze onyour class, but you are

g : expecting that users of the dasscdl Di spose on the object, you can add aDebug. Wit e
inyour Fi nal i ze method. If you see atrace output during testing, you can check the user
codeto seewhy Di spose wasnot caled.

A find noteoncdling Di spose: Itisimportant to understand that caling Di spos e on an object implies strong
ownership of the object. If an object is being referenced by many other objects, and the ownership of the object is not
clear, then Di spose should not be called on the object. Otherwise, some other object may end up using an already
disposed object, which would result in an unpredictable behavior. By the same logic, Di spose should not be caled
multiple times. These are generd considerations. If your specific needs require that Di Spose iscalable multiple
times or from multiple threads, you must add appropriate safety to your implementation of Di spose.

Hosting the Runtime

This section includes information for readers who are interested in hosting the common language runtime within their
own gpplication. If this does not interest you, you may wish to skip this section and revisit it later.

The common language runtime manages running code and provides services such as automatic memory management,
interoperability, security, etc. In order to use these services, the common language runtime has to be loaded into a
process fird. In the future, the support for common language runtime will hopefully be built into the operating system.
Today, however, an application targeting the common language runtime requires a piece of code to get the runtime up
and running. This piece of codeis referred to as aruntime host.

The common language runtime comes with aDLL cadled Ms Cor EE. dl | that can befoundin
<W nDi r >\ Syst enB2 directory. ThisDLL exportsan API caled Cor ExeMai n that implementsthe logic to
host the common language runtime.

Recdl| that an EXE-based assembly is built as a standard PE file. This PE file contains asmall piece of bootstrapping
code that pointsto Cor ExeMai n. As aresult, when the gpplication is executed, the control is transferred to

Cor ExeMni n.

Let'stake alook at the intricacies of hogting the common language run-time.

143

Side-by-Side Execution

The concept of shipping a separate runtime is not new to .NET. Other run-times that have been shipped in the past
include Visud Basic runtime, the Java virtuad maching MTS, etc.

A problem with requiring a separate runtime is that the administrators are forced to upgrade to a newer version of the
runtime even if only one gpplication requiresit. This may break one or more of the aready ingtaled applications (that
were dependent on the previous version of the runtime) because of some possible incompetibilities.

To address this problem, the NET Framework has been designed such that multiple versions of the common language
runtime can run fully sde-by-side. Now you know why the directory path for the runtime contains the version number
of the runtime. Each version of the runtime isingtalled under

<wi ndi r>\M crosoft. Net\ Franmewor k\ v<ver si on> directory.

Essentidly, not only two versions of an assembly can run side-by-side (Chapter 3), but aso two versions of the
common language runtime can run side-by-side.

Loading the Runtime

While the flexihility of side-by-sde execution of common language run-time is greet for administrators, it makesthe
job of hogting the runtime more difficult. For Sarters, the host has to decide which version of the runtime to load into
agiven process (there can be only one verson of the runtimein a particular process).

To solve this problem, the NET Framework provides a startup shim. A shim isathin piece of code that acceptsa
verson number and other startup parameters from the host and starts the common language runtime. Thisshimis
implementedin Vs Cor EE. dI | . Only one version of the shim can exist on amachine. The shim is kept as smdl and

smple as possible to ensure its compatibility with future versions of the common language runtime.

The shim exportsan API caled Cor Bi ndToRunt i meEx that ahost can cal to load the runtime into the process.
Hereisits prototype:

STDAPI Cor Bi ndToRunt i meEx(LPCWSTR pwszVer si on,
LPCWSTR pwszBui | dFl avor, DWORD st art upFl ags,
REFCLSID rclsid, REFIID riid, LPVO D FAR *ppv);

Parameter pwsz Ver si on specifiesthe version of the runtimeto load. If nul | is specified, the latest version of the
common language runtime is loaded.

Parameter pwszBui | dFI avor can be used to specify which build of the runtime to use. The NET Framework
shipswith two builds of the runtime: aworkstation build (in Ms Cor Vs . dI |) and aserver build (in
MsCor Svr . dl |'). The server build is designed to take advantage of multiple processors. The workstation build

outperforms the server build on asingle processor machine.

To load the workstation build, either nul | or wk's can be specified as pwszBui | dFl avor parameter. To load the
server build, the parameter should be sV . On asingle-processor machine, however, it is the workstation build thet is

aways loaded, even if the host requests for the server build.

144

Where is the Execution Engine Implemented?

'___.._1 Notethat Ms Cor EE. dI | containsjust the shim. The bulk of the execution engineis
—

=— J# implementedin Vs Cor Vks. dI | and MsCor Svr. dl | .

Parameter st ar t upFl ags isused to specify loader optimization seitings such as.

If the garbage collection is to be done on background threads or the threads that run the user code.

If assemblies should be loaded in a domain-neutral manner; that is, the assembly code and read-only data
structures be shared among all gpplication domains in the process. We will learn more about domain-neutra
assembliesin Chapter 6.

Parameter r ¢l si d specify the CLSID of the runtime to load to. The CLSID for the common language runtime is
CLSI D_Cor Runt i neHost .

The next two parameters are used by the host to request an interface from the common language runtime. For example,
the host can request an interface named | Cor Runt i meHost . Thisinterface alows the host to begin cresating

application domains, running user code, and to control numerous additiona control parameters.

By now it should be obvious that Cor ExeMai n endsup cdling Cor Bi ndToRunt i neEx. The former method
reads the common language runtime version from the executing assembly's PE file and passesit onto
Cor Bi nd- ToRunt i meEx.

To host the common language runtime, you can cadl Cor Bi ndToRun- t i neEX. Read Steven Pratschner's articlein
MSDN [Pra-01] to learn more on designing your host architecture. | have included a simple custom host program on
the companion Web ste.

It should be noted that the common language runtime is not alowed to be loaded more than once within a process. A
second call to Cor Bi ndToRun- Ti neEx within the same process will just return without loading a new copy of

the runtime.

Summary

In designing the .NET Framework, Microsoft had many gods, including smpler development and deployment,
cross-language interoperability, performance efficiency, security, interoperability with native platform, and so on.

The .NET Framework lets administrators control the way .NET applications run by means of configuration files.
There are two types of configuration files genera-purpose and security related. There are two types of
generd-purpose configuration files machine.config (to store system-wide settings) and application-specific.

145

The .NET Framework provides amechanism to store and retrieve custom configuration settings from the
configuration files.

The CTS defines a set of base datatypes and specifies rules for defining and extending datatypes. When managing
types, the common language run-time enforces the rules defined by the CTS.

There are two important aspects of the CTS:

1. All typesare ultimately derived from Syst em Cbj ect .
2. Typesare classfied as reference types and value types.

Reference type objects are created on the heap and val ue type objects are created on the stack. The framework
provides amechanism for conversion between value types and reference types. Conversion from vaue type to
reference type is called boxing. Conversion from reference type to vaue type is called unboxing.

The CLS defines features that are intended to work acrossdl .NET languages. Among other things, it defines a subset
of CTS datatypes that can be used by any .NET language. CLS-compliant code in one .NET language can be reused in
another .NET language.

The heart of the NET Framework is the common language runtime. It enforces the rules of the CTS, loads the
assemblies, manages execution of the code and provides runtime services to the applications.

The .NET Framework comes with two hosts for the common language runtime ahost Cor ExeMVai n that is
bootstrapped in any EXE-based assembly and ASP.NET. The .NET Framework aso provides APIsto hogt the
common language runtime within your gpplication.

Before executing a method, the J T compiler of the runtime compiles the MSIL code of the method to native machine
language code. In the process, the MSIL codeis dso vaidated (checked for invadid code) and verified for type safety.
Code that isinvalid can never be executed. Code that can be validated and verified is safe. Code that can be vdidated
and not verified is unssfe.

The security mechanism of the runtime will not et any unsafe code be executed, unless the assembly containing the
unsafe codeis permitted to do so.

While the code is being executed, the runtime provides many services to the gpplication. One such serviceis
automatic memory management. The GC mechanism provided by the framework automatically collects objects that
areno longer in use.

GC ded s with managed objects. It is the responsibility of the implementer to clean up unmanaged resources, if any, in
the class. This cleanup logic can be implemented in the destructor of the class. The compiler automaticaly converts
the destructor to Fi nal i ze method.

Implementing Fi nal i ze isresource intensive. An dternétiveisto implement Di spose ontheclass.

There are three possible cases of how a class handles resources:

146

1. A dassholds both managed and unmanaged resources.
2. A classholds only unmanaged resources.
3. A dasshalds only managed resources.

Di spose istypicaly implemented in dl three cases. Fi nal i ze should be implemented for the first two cases.

Besides automatic memory management, the runtime provides many other services. In later chapters, we will ook at
some of the important services such as interoperability, security, remoting, and so on.

References

[MS-02] ".NET Framework Deployment Guide," Microsoft Corporation, January 2002.
msdn.microsoft.com/library/en us/dnnetdep/html/dotnetframedepguid.asp

[Gun-018] Gunnerson, Eric, "Nice Box. What'sin 1t?," MSDN Library, February 2001.
msdn.microsoft.com/library/en-us/dnecscol/html/csharp02152001.asp

[Gun-01b] Gunnerson, Eric, " Open the Box! Quick,” MSDN Library, March 2001.
msdn.microsoft.conylibrary/en-us/dncscol /html/csharp03152001.asp

[Pra-01] Pratschner, Steven, "Implement a Custom Common Language Runtime Host for Your Managed App,” MSDN
Magazine, March 2001. msdn.microsoft.com/library/en us’dnmag0l/html/cr.asp

[Ede-92] Edelson, D. R., "Smart Pointers: They're Smart, but They're Not Pointers,” Proceedings of the 1992
USENIX C++ Conference, Portland, OR, August 1992.

[Ric-004] Richter, Jeffrey, " Automatic Memory Management in the Microsoft .NET Framework," MSDN Magazine,
November 2000. msdn.microsoft.com/msdnmag/issues/1100/GCI/GCl .asp

[Ric-00b] Richter, Jffrey, "Part 2: Automatic Memory Management in the Microsoft .NET Framework,” MSDN
Magazine, December 2000. msdn.microsoft.com/msdnmag/issues/1200/GCI 2/GCl2.asp

147

Chapter 5. Programming with the Base Class Library

The .NET BCL includes hundreds of classes that provide a number of useful servicesto help devel opers boost their
productivity. In this chapter, we look a how to solve many common programming tasks using these classes. By the
end of the chapter, you will become familiar with many important classes under the NET Framework.

Enumeration

A common programming task is to iterate over a collection of eements. For example, a GUI gpplication may be
required to iterate over al the open documents to close them on exit or a database reader gpplication may wish to
iterate over the set of records obtained as aresult of an SQL query to the database.

In Chapter 2, we saw that in C# one can iterate over an array using the f or each keyword. However, there are forms
of callections that cannot dway's be represented as arrays. Wouldnt it be niceif you could usef or each on your
own collection type that is not an array?

Under .NET this cgpability is achieved using enumeration. Enumeration is defined as a mechanism for providing a
smpleiteration over a set of elements. Any datatype that supports enumeration is essentidly saying thet it contains
some sort of collection that can beiterated over. Thisiteration can be achieved, for example, using thef or each
keyword in C#. Asyou may have guessed, arrays support enumeraion. Many classesin Syst em Dat a and
Syst em XM dso implement enumeration. Aswe will seein the next section, dl of the collection types under .NET

implement enumeration.

To support enumeration, a type must implement a standard (meaning framework-defined) interface, | Enurrer abl e.
Hereisits prototype:

i nterface | Enunerabl e {
| Enuner at or CGet Enunerat or () ;

Interface | Enunrer abl e definesjust one method, Get Enuner at or . Theintention of thismethod isto return a
separate object with the sole purpose of granting access to individua elementsin the set. This object is caled the
enumerator. The enumerator must implement astandard interface | Enurnrer at or . Hereisits prototype:

interface | Enunerator {
Bool ean MoveNext () ;
hject Current { get; }
voi d Reset ();

Hereisasmple example that demonstrates how to use | Enunrer at or to enumerate over a s&t.

/1 Project Enuneration

148

public static void Min() {
ArrayLi st a = new ArrayList();
a. Add("Hel l 0");
a. Add("world!'");

| Enunerator e = a.CGetEnunerator();
whi | e(e. MoveNext ()) {
String s = (String) e.Current;
Consol e. Wi teLine(s);

This code excerpt uses Ar r ay Li st (namespace Syst em Col | ect i ons), aclassthat can be used to store a
collection of generic objects. Thesizeof an Ar r ayLi st can change dynamically (whereas arrays have fixed sizes).

Initidly, the cursor is placed just before the first element in the set. To access the first eement, you mugt first cdl the
MoveNext method and then accessthe Cur r ent property. Each cdl to MoveNext advances the cursor to the
next dement inthe set. MoveNext returnsf al se when the cursor has reached the last dement in the set. At this
point, your attempt to accessthe Cur r ent property raisesan | nval i dQper at i onExcept i on. If you want,
you can cdl theReset method, which once again places the cursor just before the first element in the st.

Note that enumerators are intended to be used only to read datain the set. They cannot be used to modify the
underlying set.

Although the MbveNext / Cur r ent combination can be used to iterate over a set, the most common enumeration
syle under C#isusing thef or each statement, asillustrated here:

/1 Project Enuneration

foreach(String s in a) {
Consol e. Wi teLine(s);

Not only isthis style sSmpler to code, but it is aso more robust than the earlier style. Behind the scenes, the C#
compiler actudly generatesat ry- f i nal | y block and, if the enumerator supports| Di sposabl e (see Chapter

4), disposes the enumerator.

Robust Coding

A In C#, dwaysusef or each to enumerate over aset. Not only will the compiler prevent you

: from moving too far through the list, it will aso generate code to dispose of the enumerator.

149

Implementation Considerations

Each cdl to Get Enuner at or must return anew enumerator object. When the enumerator is constructed, it
typically takes a sngpshot of the elements currently in the set. Otherwise, the underlying set has to be locked down
from any changes while the enumerator object is dive. Generaly, thisis not desirable.

As the enumerator object stores the snapshat, it is quite possible that two successive calsto Get Enuner at or will
return two different enumerators, each with different dementsin their snapshots.

There are two common techniques for an enumerator to initiaize its snapshot:

Copy dl dementsin the set to the enumerator.
Pass a reference to the set to the enumerator.

Choosing the right technique depends on your needs. The first technigque costs more in terms of both speed and
memory. Thistechniqueis best if the set contains asmall number of dements or if it isimportant that the enumerator
reflect the exact st of dements at a specific point in time. The second technique has lower overhead. However, asthe
set may change while the elements are being enumerated, the integrity of the enumerator might get compromised.
Thistechniqueis best if the set remains stetic while being enumerated.

All the collection types under the framework use the second technique with alittle twist. When any method is cdled
on the enumerator, it checks if the underlying set has changed since the enumerator was initiaized. If the set has
indeed changed, the method throwsan | nval i dQper at i onExcepti on.

The following C# code excerpt illustrates a smple enumerator implementation that uses the second technique. Here,
classLi ne consists of two points that can be enumerated over.

/1 Project Enumerationl npl

public struct Point {
public int x;
public int y;

H

public class Line : |Enumerable {
/1 aline has two points
private Point[] mpoints = new Point[2];

public | Enumerator Get Enunerator() {
/1 sinply return a new enunerator object
return new Enuner at or (m points);

150

/1 A sinple enunerator inplementation
cl ass Enunerator : | Enunerator {
private Point[] m points;
private int mcursor;
publi ¢ Enunerator(Point[] points) {
m points = points; // keep a reference
m cursor = -1;
}
public bool MveNext () {
if (mcursor < mpoints.Length) {
M _CUr SOr ++;

}

return ! (m.cursor == mpoints. Length);

}
public object Current {

get {
if ((mcursor <0) |]
(m.cursor == mpoints. Length)) {
t hrow new I nval i dQper ati onExcepti on();

}

return mpoi nts[mcursor];

}

public void Reset() { mcursor =-1; }

Based on this code, a client can enumerate over the points of the line as follows.

/'l Project Enunerationl npl

Line | 1 = new Line();
foreach(Point pin 1) {
/1 do sonmething with p

Strongly Typed Enumerators

Although our enumeration implementation will certainly work as expected, there are a couple of issues with the

| Enurrer abl e interface that are not that apparent. Notice that the Cur r ent property on | Enunrer abl e returns
the current object as Sy st em Obj ect , not the type of the object it actually represents (Poi nt in our case). There
are two problems with this.

Firt, the client hasto cast the returned object to the more meaningful representation. In the client code shown earlier,
the compiler was generating code to convert Syst em Obj ect to Poi nt behind the scenes. Although this cast

151

operation succeeds, it hurts performance. Recall from Chapter 2 that each time a cast operation is performed, the
runtime has to check if the requested cast isvdid. If nat, it generatesan | nval i dCast Excepti on.

Thereis yet another problem because of this type conversion when dedling with vaue type e ements. When

Cur r ent iscdled, the vdue type dement is converted to its boxed equivaent. Moreover, the caler most likely will
cast the boxed object back to its value type to useit. In our previous code, for example, value type Poi nt isfirg
boxed to Syst em Cbj ect and then unboxed back to Poi nt in the client code. We know from Chapter 4 that for
performance reasons, unnecessary boxing should be avoided whenever possible.

Fortunately, it is possible to write a srongly typed enumerator. Thetrick isnot touse | Enuner abl e or

| Enuner at or interfaces when defining the class and to change the method signatures to return strong types insteed
of generic types. Thisisillustrated in the following code excerpt. The changes from the previous code have been
highlighted:

/1 Project StronglyTypedEnuner at or

public class Line /*: |Enunerable*/ ({
private Point[] mpoints = new Point[2];

public Enunerator /*I|Enunerator*/ GetEnunerator() {
return new Enuner at or (m points);

public class Enunerator /*: |Enunerator*/ {
private Point[] m points;
private int mcursor;
publi ¢ Enunerator(Point[] points) {
m_poi nts = poi nts;
m cursor = -1;

publ i c bool MuveNext () {
if (mcursor < mpoints.Length) {
m _cur sor ++;
}
return ! (m.cursor == mpoints. Length);
}
public Point /*object*/ Current {
get {
if ((mcursor <0) ||
(m.cursor == mpoints. Length)) {
t hrow new I nval i dQper ati onExcepti on();

}

return mpoi nts[mcursor];

152

}

public void Reset() { mcursor =-1; }

Y ou might be wondering if the removal of enumeration interfaces on the class will cause your beloved f or each
satement to break. Y ou will be pleased to know that the language was designed to handle this Stuation. Aslong as
the Get Enunrer at or method isimplemented on the enumerable classand the Cur r ent property isimplemented
on the enumerator class, the C# compiler lets you usethe f or each statement.

Strongly Typed Enumerator Versus IEnumerator

g If the C# code uses a foreach statement, the code generated by the compiler behaves differently
— | dependingon how Get Enuner at or isimplemented.

If Get Enunrer at or onthedlassreturnsthel Enuner at or interface, then the compiler
generatesat ry-fi nal | y block and disposes the enumerator inthef i nal | y block.

However, if Get Enunrer at or returns a strongly typed enumerator, the compiler is smart
enough not to generatethet r y- f i nal | y block unless the enumerator implements
| Di sposabl e interface

It isaso possible to extend the preceding strong-typed implementation to support the enumeration interfaces. A
typica implementation would forward the interface method cals to its noninterface counterparts, asillustrated here:

/1 Project StronglyTypedEnuner at or
public class Line2 : |Enumerable {

/1 non-interface inplenmentation
publ i ¢ Enunerator Get Enunerator () {
return new Enuner at or (m points);

/1 interface inplenmentation
| Enuner at or | Enuner abl e. Get Enuner at or () {
return Get Enunerator();

153

Note that when expanding thef or each statement againgt a class that implements both Get Enuner at or aswel
as| Enuner abl e. Get Enuner at or , the C# compiler gives precedence to the former method.

It isworth mentioning that the NET Framework provides strongly typed implementation of some frequently used
collection classes. One such exampleisclass St ri ngCol | ect i on (namespace
System Col | ecti on. Speci al i zed), which manages the collection of drings.

Collection

Another common task under programming is to store and manage ordered sets of eements. Some common examples
aretheligt of open filesin an application, the set of rows returned from a database query, the group of users dlowed
to access an gpplication, and so on.

Typicaly, deding with eements of a specific typeis encapsulated in anew type. Such atypeis caled acollection
type. A collection type essentidly lets you treat a set of elements asa single unit.

The BCL defines many useful collection types under the Syst em Col | ect i ons and
System Col | ecti ons. Speci al i zed namespaces. The following are some common examples:

ArrayLi st: Anaray of dements The sze of the array can grow dynamically.
Bi t Array: A variable-size compact array of bit values.

HashTabl e: A varidie-sizetableof key due pairs.

Queue: A vaiable-sizefirg in, first out (FIFO) queue of dements.

Sort edLi st: Avaidle-sizesorted list of key ~ due pairs.

St ack: A variadle-sizelagt in, first out (LIFO) stack of elements.

StringCol | ecti on: A vaiade-size collection of String vaues.

The .NET Framework offers aformad definition of a collection as atype that implements a andard interface
| Col | ecti on (namespace Syst em Col | ect i ons). Hereisthe definition of the interface:

interface | Collection : |Enumerable {
Int32 Count { get; }
voi d CopyTo(Array array, Int32 index);
Bool ean | sSynchroni zed{ get; }
oj ect SyncRoot { get; }

Property Count returns the number of elementsin the collection. For some types, cdculating the number of dements
can be quite time consuming. Such atype may choose to throw aNot Suppor t edExcept i on instead of

returning the count.

Method Copy To can be used to copy acallection into an array.

154

Property | sSynchr oni zed returnst r ue if the collection has been designed to be thread-safe. For updating such
acallection, no explicit thread- safety measures are needed.

Property SyncRoot returns an object that can be used to explicitly synchronize accessto the collectionina
multithreaded environment. Under C#, the returned vaueistypicdly used withal ock statement. Most
implementationsof SyncRoot simply return “this' object. Thread safety and the semanticsof | ock are coveredin
Chapter 8 when we discuss synchronization.

Note that dmost al collection classes defined in the BCL are not thread-safe by default. 1t is up to the user of the
callection to explicitly synchronize access to the collection, if necessary. The good news is that most of these
collection classesimplement amethod caled Synchr oni zed that returns a synchronized wrapper around the

underlying collection. Look in the SDK documentation for more information.
Let'snow look at how to use some frequently used (BCL) collection classes.

Lists

Although a collection isformaly defined using | Col | ect i on, theinterface provides rather limited functiondlity.
A collection type is more meaningful if it provides managesility functions such as adding and removing dements.
Such collection types can expose their functiondity by means of astandard interface, | Li st . Hereisits definition:

public interface IList : ICollection {
/'l Access individual elenment by its index
oj ect this[Int32 index} {get; set;}

/1 Addi ng el enents
I nt32 Add(oj ect iten);
void Insert(Int32 index, ohject iten);

/1 Removing el enents

voi d Renove(Object iten); // Renove the specified item
voi d RenoveAt (Int32 index); // Renove itemat the index
void Cear(); // Renove all itens

/] Search
Bool ean Contains(oject itenm); // Return true if itemfound
Int32 I ndexOr (Cbject iten); // Return the index of the item

/1 Msc

Bool ean | sFixedSize { get; } // Return true if the set
/'l cannot be resized

Bool ean | sReadOnly { get; } // Returntrue if the set
/'l cannot be nodified

155

Ascan beseenfromthel Li st interface definition, any collection type that implements| Li st must dso
implement | Col | ecti on and| Enurnrer abl e interfaces. Typesthat implement | Li st expose a decent s&t of

functiondity for adding, removing, and searching eements in the collection.

An example of aBCL dassthat implements| Li st isArrayLi st . Thisclass stores generic objects. The following

code excerpt shows how to use this class.

/1 Project ArraylLi st

cl ass Foo {
public Foo(int val) {mValue = val;}
public int Value { get {return m Val ue;}}
private int mVal ue;

cl ass MyApp {
public static void Main() {

ArrayLi st nyList = new ArrayList();

/1 Add some val ues

nmyLi st . Add(new Foo(5));
myLi st. Add(new Foo(10));
myLi st. Add(new Foo(15));

/'l enumer at e val ues

for(int i=0;i<mnyList.Count;i++) {
Foo f = (Foo) nyList[i];
Consol e. Wi teLine(f. Val ue);

/'l Renove the second val ue
myLi st . RenoveAt (1) ;

/'l enumner ate val ues usi ng foreach
foreach(Foo f in nyList) {
Consol e. Wit eLi ne(f. Val ue);

An important aspect of an | Li st -based collection typeisthat it provides indexed access to its elements; that is, you
can access an eement in the collection by itsindex, asilludrated here:

Foo f = (Foo) nyList[i];

156

Note that indexes in this collection type are zero-based.

Interndly, Ar r ayLi st usesan aray to store the elements. As elements are added and removed, it automatically
adjugtsthe size of theinterna array by alocating and freeing memory as required. To optimize performance, the sze
of theinternd array is adjusted in chunks. The class exposes a property, Capaci t y, that defines the number of
elementstheinternd array can hold without requiring aredllocation. The initid value for the Capaci t y by default
is 16, which impliesthat the first 16 dlementsadded tothe Ar r ayLi st do not result in any redlocation. Whenthe
17th dement is being added, the Capaci t y gets doubled; that is, the size of the internd array is redlocated to 32.
When the 33rd element is added, the Capaci t y gets doubled once again, and so on.

In some situations, you may wish to define your own initid Capaci ty. Arr ayLi st defines an overloaded
condructor that can be used to specify the Capaci t y. The following code excerpt sets Capaci t y to 3.

/1 Project ArraylLi st

ArrayLi st nmyNewLi st = new ArrayList(3);
Console. WiteLine("Initial capacity: {0}", nyNewList.Capacity);

Itisaso possible to change the Capaci t y property anytime during the execution. Just make sure that the specified
vaueis greater than the number of dementsthe Ar r ayLi st object is holding. Otherwise, the runtime will throw an

Ar gunent Qut Of RangeExcepti on.
Initialize Collections with Item Count

e Whenusing Ar r ayLi st or any other collection type under .NET, try to specify theinitial

: capacity. This obviates unnecessary redllocations.

Note that whenusing Ar r ayLi st , each dlement is stored as a generic object (Syst em (hj ect). There are two
problems with this. Firgt, when avaue-type element is stored, it gets boxed. Second, when retrieved, the element
typicdly requires acast back to itsorigind type.

So, can we create strongly typed collections; that is, collections where storing or retrieving el ements does not require
cagting?

Custom Collections

The BCL providesaclass, Col | ect i onBase, which you can inherit to creste a custom strongly typed collection.
This class provides aproperty of type | Li st cdledLi st that you can useto store and retrieve elements. The

following code excerpt illugtrates its usage:

/1 Project CustontCollector

157

cl ass FooList : CollectionBase {
public int Add(Foo f) {
return List.Add(f);

public Foo this[int index] {
get { return (Foo) List[index]; }
set { List[index] = value; }

public new voi d RenoveAt (i nt index) {
Li st. RenoveAt (i ndex) ;

publ i ¢ new Enumer at or Get Enunerator() {
return new Enunerator (this);

The enumerator class can be created as shown in the earlier section. To take a sngpshat, this class can store as member
field the enumerator fromthe Col | ect i onBase dass Thisisillustrated in the following code:

/1 Project CustontCollector
cl ass FooList : CollectionBase {

public class Enunerator : |Enunerator {
private | Enunerat or m BaseEnuner at or;

publ i ¢ Enunerat or (| Enuner abl e baseEnuner abl e) {
m BaseEnuner at or = baseEnuner abl e. Get Enuner at or () ;

Note that implementing a strongly typed collection using Col | ect i onBase doesn't redlly save on performance.
The casts (and possible boxing for vaue types) till take place when the vaues are passed to and from the inner ligt.
The only advantage is that the user code does not have to perform any explicit cast operations.

In the next release of the NET Framework, Microsoft plans to offer an extension to C# cdled generics. Among other
things, genericsisintended to work with value types nicely without the need for boxing.

158

Why inherit from Col | ect i onBase instead of Ar r ayLi st ?Well, Col | ect i onBase provides hooksto
monitor addition and remova of elements from the collection. For example, one can override Col | ect i onBase's
virtud methods Onl nsert and Onl nser t Conpl et e to provide extralogic before and after inserting an element
into the collection.

Asacollection of stringsis used S0 often in programming, it is worth noting that the BCL provides a strongly typed
collection for tringscdled St r i ngCol | ecti on.

Arrays

Although one can implement a strongly typed collection by hand, the NET Framework provides asimpler mechanism
to do so by means of arrays. An array defines away to store a set of strongly typed elements. The only limitation on
an array isthat onceit is alocated, its Sze cannot be changed.

In C#, creating and using arraysis quite smilar to that in C++ or Java. The following code excerpt illugtrates its
usage:

/1 Project SinpleArray

int[] arr = newint[] {20, 10, 40, 30};
int [] newarr = new int[4];

/1 Method 1 of accessing el enents

for(int i=0;i<arr.Length;i++) {
newarr[i] =arr[i];
Consol e. WiteLine(newarr[i]);

When dedling with arrays, there are two important differences that C++ programmers should be aware of. Thefirgt
difference is that you cannot define a fixed-sized array declaratively. For example, the following lines of code are not
vaid under C#:

int arr[4]; // illegal
int[4] newarr; // illegal

However, you can define the size of the array using keyword new, aswe did in our previous example. Y ou can either
define the Sze or initidize the array thet indirectly definesthe Sze:

int [] newarr = new int[4];
int[] arr = newint[] {20, 10, 40, 30}; // initialize with val ues

The second differenceisthat in C# (and in Java), creating an array of areference type, as shown in the following code
excerpt, does not creete each individud eement of the array. To illugtrate this, consider the following code excerpt:

/1 Project SinpleArray

159

class Foo {

Foo[] foos = new Foo[2];

Cresting an array only creates the placeholder for storing the elements, not the eements (unlike C++, which crestes
and initidizes the dements aswell). The individua dements can be created in two ways, asillustrated here:

/1l Project SinpleArray

/1 Method 1
Foo[] foos = new Foo[2] { new Foo(), new Foo() };

/1 Method 2. Use a | oop.
for(int i=0;i<2;i++) {
Foo[i] = new Foo();

Note that this extrainitidization logic is needed only for reference type elements, not for vaue types.

Behind the scenes, an array gets derived from Syst em Ar r ay dass Thiscdassimplementsinterface| Li st but
hides some of the interface's methods such as Add and Renrov e that may result in changing the size of the array.

Syst em Arr ay aso provides methods for searching and sorting arrays. For example, the following line of code

sorts our array in an ascending order:
Array. Sort (arr);

Array Covariance

— Under C# specifications, for two reference types A and B, if there exigs a conversion from A
—_— to B, then it is also possible to convert an array of A to an array of B. The following code
excerptillustrates this.

/'l Project SinpleArray

class Fruit {

}

class Orange : Fruit {

160

class TestFruits {
public static void Test() {
Orange[] oranges = new Orange[2] ;
Fruit[] fruits = oranges;

Essentialy, thislets you convert a bag of oranges to abag of fruits, which is not possiblein
C++. Java programmers, however, are used to thisidea of array covariance.

It should be noted, that array covariance applies only to reference types. It does not apply to
vaue types. For example, you cannot convert i nt [] toobj ect [] ordoubl e[] to

float[].

Dictionaries

All the collection types that we have dedlt with so far store aset of Single elements. Sometimes, it is desirable to store
elements as key vaue pairs. For example, a professor may wish to creste alist of student grades where the key isthe

full name of the sudent and the vaue isthe grade. Such a collection is referred to as a dictionary.

The .NET Framework offers aforma definition of adictionary as atype that implements a standard interface

I Di cti onary. Hereisitsdefinition (dlong with a short description of each method):

public interface IDictionary : |Collection {
/'l access el enents of the collection
oj ect this[Object key] { get; set; } // indexed access
| Coll ection Keys { get; } // return a collection of keys

| Coll ection Values { get; }// return a collection of val ues
new | Di cti onaryEnuner at or Get Enunerator(); //The enunerat or

/1 Add, Renove, etc.

voi d Add(nj ect key, hject value); // add a pair
voi d Renove(Obj ect key); // renmove a pair by its key
void Cear(); // clear the whole table

/] search
Bool ean Cont ai ns(Cbj ect key); // search for a given key

/1 Msc
Bool ean | sFi xedSize { get; } // Is the size fixed?
Bool ean | sReadOnly { get; } // Is it just read-only?

161

Ascanbeseenfromthel Di ct i onary interface definition, any dassthat implements| Di ct i onar y must dso
implement | Col | ecti on and| Enuner abl e.

Perhaps the most commonly used BCL implementation of | Di ct i onar y istheHasht abl e dass Thefollowing

code excerpt demonstrates how to create and use this class:

/1 Project HashTabl e

public static void Main() {
Hasht abl e grades = new Hasht abl e();

/1 Add some val ues
grades. Add(" Toni", 70);
grades. Add("Di ck", 60);
grades. Add("Harry", 80);

/1 display grade for a specific student
int grade = (int) grades["Harry"];
Consol e. WiteLine("Harry's grade={0}", grade. ToString());

/'l enumer at e val ues
foreach(DictionaryEntry entry in grades) {
Consol e. WiteLine("{0}={1}", entry.Key, entry. Val ue);

/1 Renove Di ck
gr ades. Renove("Di ck");

/'l enumer at e val ues
foreach(DictionaryEntry entry in grades) {
Console. WiteLine("{0}={1}", entry. Key, entry. Val ue);

Interndly, aHasht abl e's storage is divided into a number of buckets. Each bucket can store a most one entry.
When an entry is being added to the Has ht abl e, the table uses the hash code of the key to compute a suitable
bucket location for storing the entry. The search dgorithm is based on an agorithm caled double hashing [Nig]. If
the computed bucket has dready been filled, then the dgorithm tries to guess another bucket location using a different
hash function, thus minimizing clustering. The guessing process continues until an empty bucket isfound or acertain
number of attempts have been exceeded.

For looking up akey, the Hasht abl e gpplies the same double hashing technique.

162

From the agorithm, there are two things that must be obvious. Firgt, providing a good hash function on aclass can
sgnificantly affect the performance of adding those objects to a hash table. In a hash table with agood
implementation of a hash function, searching for an element takes constant time. In a hash table with a poor
implementation of a hash function, the time for a search increases with the number of itemsin the hash table. Hash
functions should dso be inexpensive to compute.

Second, for faster inserts and lookups, the number of buckets should be more than the number of entries. The ratio of
entries to bucketsis caled the load factor of the hash table. The default load factor for the Has ht abl e is 1.0,
implying that there is one entry per bucket on an average. A load factor of lessthan 1.0 implies that when an entry is
being added to the Has ht abl e, thereisagood chance that an empty bucket will be found on the first attempt.

Likewise, thereis agood chance of looking up akey on the first atempt.

It isworth noting that the increased performance is achieved at the expense of higher memory consumption asmaler
load factor vaue implies that more buckets must be crested.

A Good Load Factor for Hashtables

4 ¢ A load factor of 0.7 to 0.8 has been found to provide agood balance between performance and

i : memory consumption.

TheHasht abl e provides many overloaded constructors that can be used to specify the load factor. The following
line of code uses one such congructor.

/1l Project HashTabl e
Hasht abl e newgrades = new Hasht abl e(10, 0. 7f);

TheHasht abl e constructor used in this code takes two parameters. The first parameter is used to specify theiinitid
capacity of the Hasht abl e object. The second parameter is the load factor that the Hasht abl e object should use.

There is an important programming consideration when defining a type that may be used as akey in the Hasht abl e.
When an entry isbeing added to the Has ht abl e or akey isbeing looked up, the Hasht abl e obtainsthe hash

code by caling Obj ect . Get HashCode onthekey. The actua key is matched by caling Cbj ect . Equal s on

the key. Therefore, it isimportant for the key type to provide a suitable implementation of Get HashCode and

Equal s methods. Furthermore, these methods must produce the same results when called with the same parameters
whilethe key exigsinthe Hasht abl e.

Note that the Hasht abl e stores keys and values as generic objects. It is possible to define a custom dictionary that

is strongly typed. The framework providesaclass, Di ct i onar yBase, to make this job easier for the implementers.
Defining acustom dictionary based on Di ct | onar yBase issmilar to defining a callection using

Col | ect i onBase, aswedid earlier, and is | €ft as an exercise for the readers.

163

The BCL dso providesanother | Di ct i onar y-based classcaled Li st Di ct i onary. Thiscassisasmple
implementationof | Di ct i onar y usngasingly linked ligt. If the number of eements being stored is 10 or less,
this class provides better performance than aHas ht abl e and usesless memoary.

The BCL providesonemoreclass, Hybri dDi ct i onary,whichusesLi st Di cti onary whilethe callection is
small and then switchesto Hasht abl e when the callection getslarge. This dassis recommended for casesin which
the number of elementsin the dictionary is unknown. However, be aware of the overhead of switching between the

Li st Di cti onary andtheHasht abl e.

Using a Different Hash Code Algorithm

A HashTabl e depends on the hash code of the object being inserted or retrieved. Recall that providing a good hash
function on a class can sgnificantly improve the performance of adding those objects to the hash table.

If the type being added to the hash table is owned by you, it is easy to override bj ect . Get HashCode and
provide a suitable implementation. But what can you do about types that you don't own?

For cases where you cannot override Get HashCode, the BCL provides a different mechanism to provide your hash
function by way of interface | HashCodePr ovi der . Hereisits definition:

public interface | HashCodeProvi der {
i nt Get HashCode(obj ect 0);

Some overloads of the Hasht abl e congructor take | HashCodePr ovi der asapaameter. Thisgivesyou a
chance to passin an object that implements | HashCodePr ovi der and returns the hash code based on your logic.

A common example of atype that you don't own but might require a different hash functionis St r i ng. The default
implementation of St r i ng. Get HashCode computes the hash code thet is based on the case- sengitivity of the
string. However, you can now define your own hash code provider that returns a case-insendtive hash code. Asa
matter of fact, this caseis so common that the BCL provides such aprovider lass

Casel nsensi ti veHashCodePr ovi der . The BCL dso provides astatic instance of this class that can be
accessed viaCasel nsensi t i veHashCodePr ovi der . Def aul t .

Sorting a Collection
Congider the following code excerpt:

/1l Project CollectionSort

cl ass Foo {
public Foo(int val) {mValue = val;}
public int Value { get {return m Val ue;}}
private int mVal ue;

164

class M/App {
public static void Main() {

ArraylLi st nyList = new ArrayList();

/1 Add sone val ues

nyLi st. Add(new Foo(10));
nmyLi st. Add(new Foo(5));
nmyLi st. Add(new Foo(15));

/'l enumnerate val ues
foreach(Foo f in nyList) {
Consol e. Wi teLi ne(f. Val ue);

The main program sores ingtances of class Foo inanAr r ayLi st object and dumps the value of each instance
back to the console. When the program is run, you see the following output:

10
5
15

Sometimesit is desirable to have a sorting order between items of acollection. In fact thisis such acommon
programming request that BCL definesamethod, Sor t , on ArrayLi st (asswel asArr ay). Our FOo itemscan

be sorted, for example, using the following line of code:

myLi st. Sort ();

However, if you execute this code, you will notice that the program throwsan | nval i dOper at i onExcepti on.
The problem is that the system doesn't know how to compare one ingtance of Foo to another.

To impose asorting order there must be some mechanism that adlows two items to be compared. Under .NET, this
mechanism is provided by means of astandard interface | Conpar er , defined asfollows:

public interface | Conparer ({

int Conpare ((hject x, (hject y);

This smple interface defines just one method, Conpar e. The purpose of this method is to compare two objects and
return an integer indicating which object should be placed before the other. The implication of the return vaueis
shownin Table5.1.

Table 5.1. Comparer Return Value

Return Value Implication

165

A negative number X is less than y. Therefore, x should be placed beforey.

0 X and y are equal. Either can come first.

A positive number X is greater than y. Therefore, X should be placed aftery.

ArrayLi st suppliesmany overloaded versions of the Sor t method. One such method takes a parameter of type
| Conpar er that the method uses internaly for comparing items in the collection. Y ou can define anew type that
implements| Conpar er and passit to this method, asillustrated here:

/1l Project CollectionSort

cl ass FooConparer : | Conparer {
public int Conpare(Chject x, bject y) {
Foo f1 = x as Foo;

Foo f2 =y as Foo;
if ((null ==11) || (null =1f2)) {
t hr ow new Ar gunent Exception();
}
return (f1.Value - f2.Value);
}
}
class M/App {
public static void Min() {
nyLi st. Sort (new FooConparer());
}
}

The BCL provides some useful utility classesthat are based on | Conpar er . For example, you can use the class
Casel nsensi ti veConpar er to perform case-insenstive comparisons on strings. The class provides aatic

instance that can be obtained using the property Casel nsensi t i veConpar er . Def aul t . Likewise, if you are

interested in case- sensitive comparisons, you can use another class Conpar er or its satic instance
Conparer. Defaul t.

Case-Insensitive Hash Table

(LT you wish to define a hash table that can store and retrieve keysin a case-insengtive fashion,

: you heed to supply both a case-insenstive hashcode provider and a case-insengtive comparer
to the hash table. This can be done using one of the overloaded constructorsof Hasht abl e,

as shown here.

Hasht abl e grades = new Hasht abl e(
Casel nsensi ti veHashCodePr ovi der . Def aul t,
Casel nsensi tiveConparer. Defaul t);

The BCL defines yet another mechanism to compare objects by means of an interface, | Conpar abl e (namespace
Syst em). Hereisits definition:

public interface | Conparable {
i nt ConpareTo((bj ect object);

Any object that implements | Conpar abl e isdeclaring that it knows how to compare itsdf with other objects. The
interface method Conpar e To serves comparing 't hi s* object with the specified object. The following code
excerpt illugtrates this. It defines anew class FooNew that is a replacement for our old class Foo. The changes have

been highlighted.

/1l Project CollectionSort

cl ass FooNew : | Conparabl e {
public FooNew(int val) {mValue = val;}
public int Value { get {return m Val ue;}}

public int ConpareTo(Object o) {
FooNew f 0 as FooNew;
if (null ==1) {
t hr ow new Ar gunent Exception();

}

return (this.Value - f.Value);

private int mVal ue;

When such atypeisused with Ar r ay or Ar r ayLi st , thereisno need to provide a separate comparer object for
sorting. However, a separate comparer object is till useful if your collection contains objects of different types.

It is worth mentioning that dmost &l base datatypes defined inthe BCL, such as| nt 32, St ri ng, Doubl e, and so
on, implement thel Conpar abl e interface

How about keeping the keys of adictionary in asorted order? Well, aHasht abl e doesn't provide such asorting
functionality. However, the BCL providesanother | Di ct i onar y-based classcaled Sor t edLi st that can be
used to sort the keys, either viathe | Conpar abl e inteface or the | Conpar er interface. Check the SDK
documentation on how to use this class. Kegp in mind, though, that operationson aSor t edLi st tend to be dower
than operationson aHasht abl e because of the sorting.

167

Y ou may bewonderingwhy | Conpar abl e isdefined in the Sy st emnamespace and not in the
Syst em Col | ect i on namespace. Thisis because this interface provides a general mechanism that is not just
specific to collections.

Cloning

We know that when we assign one reference-type object to another, both the objects point to the same memory
location after the operation is completed. If amember field in one object is changed, for example, it gets reflected in
the other object.

Sometimes you might want to clone the object, i.e., create a duplicate copy of the object. The NET Framework
formalizes this nation of cloning by meaning of astandard interface, | CI oneabl e. Hereisits definition:

public interface | oneable {
hj ect Cone();

The interface defines just one method, CI one. The purpose of this method is to return aclone of the object. Any
classthat implements| Cl oneabl e mustimplement Cl one and the necessary logic to duplicate the object.

Interface | Cl oneabl e isimplemented by many classesin the BCL. All the collection classes that we covered
earlier implement thisinterface.

The smplest implementation of Cl one could just invoke Syst em . Cbj ect . Menber wi seCl one, as
illugtrated in the following code excerpt:

/1 Project doning

class Student : |d oneable {
public String Name;
public int G ade;

public Object Cone() {
return this. Menberw sed one();

class M/App {
public static void Main() {

/] Create sl
St udent s1 = new Student();

168

11

Clone s1 to s2

Student s2 = (Student) sl1.d one();

The Menber wi seC one method makes a shalow copy of the object; that is, if the object contains areference-type
field, the cloned object points to the same reference. Only the vaue-type fields are truly duplicated.

If this shallow copy behavior is not desired, it is up to you to provide your own deep-copy semantics when you

implement Cl

one.

A related note on the collection classes: Mogt of them implement | CI oneabl e asashalow copy. If you reguire
deep-copy semantics on, for example, an Ar r ayLi st , derive your own classfrom Ar r ayLi st and override the
method Cl one.

Streams

A common programming task is to read data from or write data to files, network sockets, or some other devices. The
BCL formaizes this behavior by means of an abstract class St r eam(namespace Syst em | O). Table 5.2 shows

some frequently used methods available on this class.

Table 5.2. Some Methods Available on System | O St r eam

Method Description

CanSeek |Can you seek to a position within the stream?
CanRead |Can the stream be read?

CanW i t e|Can the stream be written to?

Length |Length of the stream.

Posi t i on|Current cursor position.

Seek Seek to a position.

Read Read bytes from the stream.

Wite Write bytes to the stream.

Fl ush Flush any buffered data to the underlying device.
d ose Close the stream and release any resources (such as sockets and file handles). Data is flushed

before the stream is closed.

The St r eamclass aso offers methods to perform asynchronous reads and writes. Check the SDK documentation for
more informetion.

169

Why doesn't the table show any method to open a stream? The semantics of opening a stream depends on the
underlying device. St r eamisjust an abstract class. Table 5.3 lists some common classes inherited from St r eam

Table 5.3. Some Common Stream-Based Classes

Name Description
Fil eStream A buffered stream based on a disk file
Net wor kSt r eam An unbuffered stream based on a socket

Buf f er edSt r eam A wrapper class that adds buffering to an existing unbuffered stream

MenorySt ream A stream based on memory

How astream is crested depends on the mechanism provided by the underlying class. For example, aFi | eSt r eam
object can be created using the static methods CpenRead (for reading) or QpenW i t e (for writing) that are
availableon aBCL dassFi | e (namespace Syst em | O). The following code excerpt, for example, opens afile for

writing, writes some bytes to the stream, and closesiit:

/1l Project FileStream

public static void Main() {
/1l Store ASCI1 "hello" as bytes
Byte[] data = new Byte[] {104, 101, 108, 108, 111};

/1 Open anewfile for witing. Wite the data

using (FileStreamfs = File. QpenWite("Qutput.Dat")) {
fs.Wite(data, 0, data.Length);

fs.d ose();

Notethat the Fi | eSt r eamobject is scoped withinausi ng block. Thisisto ensure that the file handleis properly
disposed off in case of an error (or after it has been used).

Data Encoding

Stream Read and St ream Wi t e let you read and write data as bytes. However, programmersin general
prefer dedling with strings to bytes. It would be nice to have a mechanism to convert a string to a byte array and vice

versa

At this paint, it is worth reinforcing the differences among bytes, characters, and strings under C# (and under .NET).
A C#byte (Syst em Byt e) isasingle unsigned byte (8-hit), a C# char (Syst em Char) isa2-byte Unicode
character, and aC# string (Sy st em St ri ng) isan array of Unicode characters.

The BCL provides a number of encoding classes under the Syst em Text namespace to convert between characters,
bytes, and strings using various encoding schemes. These classesinclude ASCI | Encodi ng,
Uni codeEncodi ng, UTF7Encodi ng, and UTF8ENncodi ng to ded with ASCII, Unicode, UTF-7, and UTF-8

170

encoding schemes, respectively. The namespace Sy st em Text aso provides another class cdled Encodi ng that
exposes the encoding classes as static properties. The following code excerpt demonstrates how to use this classto
convert between strings and byte arrays.

/'l Project Encoding

public static void Main() {
/1 Convert ASCII-encoded bytes to UNI CODE string
Byte[] buf = new Byte[] {104, 101, 108, 108, 111};
String s = Encoding. ASCI | . Get St ri ng(buf);
Consol e. Wi teLine(s);

/1l Convert the string back as ASClI | -encoded bytes
Byte[] asciiBuf = Encodi ng. ASClI | . Get Byt es(s);
foreach(Byte b in asciiBuf) {

Consol e. Wi teLine(b);

/1l Convert the string to UNI CODE- encoded byt es
Byte[] uni codeBuf = Encodi ng. Uni code. Get Byt es(s);
foreach(Byte b in uni codeBuf) ({

Consol e. Wi teLine(b);

Readers and Writers

Using the encoding classes, it is now possible to convert bytes to strings each time they are read from a
Fi | eSt r eamobject and to convert stringsto bytes just before writing themtothe Fi | eSt r eam Itisdesirableif

you don't have to deal with raw byte input and output at al.

The BCL providestwo classes, St r eanReader and St reanW i t er , to hepyou. St r eanReader reads data
from a stream as charactersor lines. St r eamV i t er writes data to a stream as characters or lines. The specific
encoding to use can be specified in the congtructor. In the following code excerpt, an ASCII lineisread from an input
fileand is saved back as a Unicode linein an outpuit file:

/1l Project ReaderWiter

public static void Main() {
/1l Open the file for reading and read one |ine
String sLine;
using (FileStreamfsr = File. OpenRead(" Readne. Txt")) {
usi ng(St reanReader reader =
new St r eanReader (f sr, Encodi ng. ASCl 1)) {
sLi ne = reader. ReadLi ne();

171

reader. d ose();

}
fsr.d ose();

/1l Open a newfile for witing. Wite line as UN CODE
using (FileStreamfsw = File. OpenWite("NewReadne. Txt")) {
using(StreanWiter witer =
new StreanWiter(fsw, Encoding. Uni code)) ({
witer.WiteLine(sLine);
witer.d ose();

}

fsw O ose();

Note the use of using statementson St r eanrReader and St r eam\W i t er objects. Both the classes implement
| Di sposabl e and release any unmanaged resources used viaDi spose method.

Also note that both the classes define an overloaded constructor that takes as a parameter the filename to open (insteed
of astream). If you use this congtructor, you don't have to dedl with stream objects separately.

St r eanReader offersaparticular feature that you should be aware of. If you are not sure of the encoding used in
theinput file, you can ingtruct the St r eanReader object to detect the encoding during its congtruction. If the

det ect - encodi ng parameter is specified ast r ue, the reader object looks at the first three bytes of the stream
(cdled byte order marks [BOM]) to identify the encoding. The classis cgpable of automaticaly recognizing UTF-8
and Unicode (little-endian as well as big-endian) encoding schemesiif the file starts with the appropriate BOM.

St reanReader and St reanW i t er classesare great for character input and output, but what if you want to
save and load other basic datatypes such as integer, boolean, float, and so on? To solve this problem, the BCL

provides two more classes, Bi nar yReader and Bi nar yW i t er under the namespace Syst em | O Thesetwo
classes provide methods for reading and writing many base datatypes to the stream. The following code excerpt
illugtrates the use of these classes. The program writes an integer and a double vaue to afile and reads it back. For
simplicity, | am not wrapping any objectsinthe usi ng block.

/1 Project BinaryData

public static void Main() {
/Il Open afile for binary wite
FileStreamfsw= File. QpenWite("Qutput.bin");
Bi naryWiter bw = new Bi naryWiter(fsw);

/1 wite sone basic data types to the stream
int ival = 10;
doubl e dval = 20.5;

172

bw. Wite(iVal);
bw. Wite(dval);
bw. d ose();
fsw O ose();

/1l Open the file for reading
FileStreamfsr = File.OpenRead(" Qut put. bin");
Bi nar yReader br = new Bi naryReader (fsr);

/'l read data back

int iVal New = br. Readl nt 32();

doubl e dVval New = br. ReadDoubl e();

br. d ose();

fsr.d ose();

Console. WiteLine("{0}, {1}", iVal New, dVal New);

Notethat the Bi nar yW i t er classcan aso be used to write strings. One of the overloaded W i t € methods on the
classtakes atring as an argument and writes it out as a stream of bytes (based on the encoding the Bi nar yW i t er

classisusng).

Serialization

At this point, we are experts on reading and writing various datatypes to and from stresms. However, what we haven't
consdered is deding with perhaps the most important datatype, an object. How do you save an object to the stream
and load it back such that it isin the same state when it was saved?

Oneway isto provide explicit save and load methods on your classthat take a St r eamobject as an argument.
Within each method, you can explicitly save or load each member field of the class.

Thereis nothing wrong with this technique; but when dedling with large numbers of classes, it soon becomes painful

to add the logic to each of the classes. Why can't we write a generic mechanism to load and save any arbitrary object?
After dl, the metadata contains dl the information about al the fields of a class. It would be easy to enumerate

through al the fields of an object in ageneric manner to save or to load them. .NET does provide such a generic
mechaniam.

The process of saving the state of an object into a stream is a common programming task, referred to as serialization.

Seridization is an important part of the NET Framework. The remoting infrastructure and services depend on
seridization. For example, the seridized representation of an object can be taken to a different machine where the
object can be reconstructed. Given an efficient seridization framework, an object may smply be seridized to astream
of bytesin memory and transmitted to the remote machine.

173

Under .NET, the type that requires seridization has to indicate this by means of the
System Seri al i zabl eAttri but e classlevd dtribute. Thisisillustrated in the following code excerpt:

/1l Project Serialization

[Serializable]
cl ass Foo {

If the seridization is attempted on atype that isnot marked as Ser i al | zabl e, the system throws a
Serial i zat i onExcept i on. Thisexception isaso thrown if any object in the seridization graph is not marked
asSerializable.

By defaullt, dl the member fields defined in the type get seridized. To omit apecific field from seridization, you can
apply the Syst em NonSeri al i zedAt t ri but e atributeto thefidd. Thisisillugrated in the following code

excerpt:

/1l Project Serialization

[Serializable]

cl ass Foo {
private int mi;
[NonSerialized] private double md;
private string ms;

The object is now ready for seridization, but how do you initiate the seridization process?

Formatters

Seridization can beinitiated either by an gpplication or by the runtime. The gpplication initiates seridization, for
example, to store the sate of the object on adisk file when the gpplication is being exited. The runtime initiates
seridization, for example, when the object is being passed to a different gpplication domain, perhaps to a different
machine.

The format of the seridized data depends on why the object is being seridized. For example, if the object is being
trandferred to a different computer using HT TP, storing datain a SOAP-compliant XML format makes sense.
However, if the object is being stored to afile or being transferred using TCP, storing data in abinary formismore
efficient. Therefore, it makes sense to decouple the logic of seridization and the format of the seridized data.

Under .NET, the format of the output is controlled by what is caled aformatter, or atype that implements a standard
interface | For mat t er . Here are some methods on the interface that are relevant to our current discussion:

174

public interface | Formatter ({
void Serialize(Streamstream Object root);
voi d Deserialize(Streamstrean;
St ream ngCont ext Cont ext {get; set;}

TheSeri al i ze method serializes an object (and dl its children) to a stream.

TheDeser i al i ze method reads the data back from the stream and reconstructs the state of the object.

The Cont ext property provides amechanism for theinitiator to supply additiona information to the object being
seridized. Itstype, St r eami ngCont ext , exposestwo properties, St at e and Cont ext .

The St r eam ngCont ext . St at e property isan enumeration of type Cont ext Sr eam ngSt at es thetis
used to indicate why the datais being seridized. For example, avdue of Cr ossMachi ne impliesthe seridized
dataisfor aremote computer. A vaue of Cr 0SsPr ocess impliesthe datais for a different process on the local
computer. Look into the SDK documentation for the rest of the enumeration values.

The St r eam ngCont ext . Cont ext property provides away to supply any additiona information, in the form
of an object, to the object being seridized.

Note that you are not required to specify a St r eam ngCont ext object in your code. The runtime provides an
appropriate context to the object being seriadized.

Enoughwith | For mat t er ! Let's see how we can use aformatter.

The BCL provides aformetter caled Bi nar yFor mat t er to sriaize an object to abinary format. The output is
very compact and can be parsed quickly. The following code excerpt illugtrates the use of this formatter:

/1 Project Serialization

public static void UseBinaryStreamn() ({
Foo f1 = new Foo(10, 20.5, "Jay");

/[l Open a file for binary wite
FileStreamfsw= File. OpenWite("CQutput.bin");
Bi naryFormatter bf = new Bi naryFormatter();
bf. Serialize(fsw, f1l);

fsw O ose();

/'l Open the file for reading and recreate Foo
FileStreamfsr = File.OpenRead(" Qut put. bin");
Foo f2 = (Foo) bf.Deserialize(fsr);

fsr.d ose();

175

It isworth noting that seridization of an object is not limited to its public member fields. To store the state of the
object with complete fiddlity, al the member fidds, including the private ones, are seridized.

Asthe seridization logic is independent of the stream being used, it isreldively trivid to modify the preceding code
touseaMenor ySt r eaminstead. Project Ser i al i zat i on aso contains such an example.

Thereis yet another useful formatter the BCL provides called the SoapFor mat t er . Thisformatter generates
SOAP-compliant XML-based output. If you replace Bi nar yFor mat t er with SoapFor matt er inthe
preceding code, here is how the output looks (project SoapFor mat t er):

<SOAP- ENV: Envel ope
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: xsd=http://ww. w3. or g/ 2001/ XM_Schena
xm ns: SOAP- ENC="ht t p: / / schenmas. xm soap. or g/ soap/ encodi ng/
xm ns: SOAP- ENvV="ht t p: / / schenmas. xm soap. or g/ soap/ envel ope/
SQAP- ENV: encodi ngSt yl e=
http://schemas. xm soap. or g/ soap/ encodi ng/
xm ns:al="http://schemas. m crosoft.comclr/assen nai n">
<SQOAP- ENV: Body>
<al:Foo id="ref-1">
<m.i >10</ m.i >
<ms id="ref-3">Jay</ m s>
</ al: Foo>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

A find note on formatters: Although the BCL-provided formatters will meet most of your needs, it is possble to
create your own formatter. The BCL supplies an abstract base class cdled For mat t er that provides some helper
methods for implementing the | For mat t er interface. Adventurous readers can implement their own formetter by
inheriting from this dass.

Custom Serialization

Occasondly, an object itself may wish to finely control how it gets seridized. For example, the object might want to
saveitsinterna state in amore compressed way if the dataiis being written to afile. Perhaps the object does not wish
to save some dataiif it is being seriaized for the purpose of being rebuilt on a different computer.

To provide custom seridization, a class has to support astandard interface, | Ser i al | zabl e. Hereisits definition:

public interface |Serializable {
voi d Get Obj ect Data(Seri alizationlnfo info,
St reanm ngCont ext cont ext);

176

When seridization isin progress, the framework checksif the object implementsthe | Ser i al i zabl e interface in
which caseit cals Get Cbj ect Dat a on the object. This gives the object a chanceto seridize itsdlf. The parameter
Seri al i zat i onl nf o holdsthe seridization data. The object can inject its own datainto

Seri al i zati onl nf o by meansof amethod caled AddVal ue. Thisisillusrated in the following code excerpt:

/1l Project CustonBerialization

[Serializable]
class Foo : ISerializable {

public void Get ChjectData(Serializationlnfo info,
St ream ngCont ext ctx) {
i nfo. Addval ue("My iVval", mi);
i nfo. Addval ue("My dval", md);
i nfo. Addval ue("My sval", ms);

Method AddVal ue can be caled multiple timesto inject multiple entries. Each entry forms akey vaue pair when
the key isin the form of astring. The value could be of any base datatype. The Ser i al i zat i onl nf o class
provides many overloaded AddVal ue methodsto ded with various base datatypes.

Parameter St r eami ngCont ext provides the contextud information. Recall that thisinformation is set either
explicitly by the application or implicitly by the runtime.

Notethat implementing | Ser i al i zabl e on aclass doesn't preclude the need for the[Ser i al i zabl e]
attribute. Without this attribute present on the class, the common language runtime does not even consider seridizing
the ingtances of the class.

Deserialization

Now you know how to save an object's state. How do you read the data back to restore the state of the object?
Implementing just the | Ser i al i ze interfaceis not enough. Y ou also have to provide an overloaded constructor for
your classthat takes Ser i al i zat i onl nf o0 and St r eam ngCont ext asthe parameters. Thisisillustrated in
the following code excerpt:

/1 Project CustonBerialization
[Serializable]

class Foo : ISerializable {

public Foo(Serializationlnfo info, Stream ngContext ctx) ({
mi =info.GtInt32("M iVal");
md = info. Get Doubl e("My dVval ");

177

ms =info.GtString("M sVal");

During deseridization, the runtime cdls this congtructor, giving the object achance to initidizeitsinternd state. The
parameter Ser i al i zat i onl nf o providesmany Get XXX methods to retrieve various base datatypes.

Deserialization Completion

Deseridization is quite smple for objects that have no dependencies on other objects. In redl life, the root object being
seriaized points to many other objectsthat in turn point to other objects. Sometimes, from an object's perspective, it is
desrable to know if the deseridization processis complete; that is, if the entire object graph has been deseridized.

An object that wants to receive a natification at the end of the deseridization must implement a standard interface,
| Deseri al i zati onCal | back. Thisinterface definesjust one method, OnDeser i al i zat i on, that the
run-time calls at the end of the deseridization Y ou can implement the interface as shown in the following code

excerpt:
/1l Project Deserialize

[Serializable]
class Foo : |Serializable , |DeserializationCallback {

public void OnDeserialization(Qoject sender) {
Consol e. WitelLine("Deserialization conplete");

XML Serializer

In the new era of communication, XML has become a standard format for information exchange between businesses.
TheBi nar yFor mat t er provides acompact format, but it works only between .NET applications. Seridizing to
XML creates amessage that is readable on any platform by anyone. When developing business gpplications, it is
becoming quite common to write to or read from XML documents. The format of the XML document typicaly
conformsto a given XML Schema Definition (XSD) schema (. xsd) document.

NET providesaclass, Xml Seri al i zer (namespace System Xm . Seri al i zat i on), that enablesyou to
control how objects can be seridized into XML output and how objects can be rebuilt from XML input.

Technicdly, Xm Seri al i zer beongsto the XML Class Library and not the BCL. However, | am covering it here

because it is relevant to our current discussion on seridization.

Usng Xm Seri al i zer issimilar to using aformatter. The following code excerpt demonstratesits usage. Here,
an ingtance of dass Book| nf o is seridized to a document. Later the document is deserialized to create anew
ingance of Book| nf o:

178

/1 Project Xm Serialize

public class Booklnfo {

public String I SBN {
get{return m.I SBN;}
set{m | SBN = val ue;}

}

public String Title {
get{return mTitle;}
set{mTitle = val ue;}

}

public String Author {
get{return mAut hor;}
set {m Aut hor = val ue;}

public float Price = 0.0f;
private String mTitle ="";
private String mAuthor ="";
private String mISBN ="";

static public void Run() {
Bookl nfo bl = new Bookl nfo();
bl.1SBN = "0130886742";
bl.Title = "COM+ Programm ng";
bl. Aut hor = "Pradeep Tapadi ya";
bl. Price = 40.0f;

/1 Open a file for XM out put

FileStreamfsw = File. OpenWite("Qutput00.xm");

Xm Serializer xs = new Xm Seri al i zer (typeof (Bookl nfo));
xs. Serialize(fsw, bl);

fsw O ose();

/1l Open the file for reading

FileStreamfsr = File. OpenRead(" Qut put 00. xm ") ;
Bookl nfo b2 = (Bookl nfo) xs.Deserialize(fsr);
fsr.d ose();

Xm Seri al i zer saidizesthe public fields and properties of atype. Contrast thisto a formatter, which can save
even the private fields and does not do anything specid for properties. Also, the seridizer does not pay any attention
eithertothe[Seri al i zabl e] attributeor tothel Seri al i zabl e interfface

179

Here is the output when the preceding program is executed:

<?xm version="1.0"?>
<Bookl nfo xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_LSchena- i nst ance"
xm ns: xsd="http://wwmv w3. or g/ 2001/ XM_Schema" >
<Price>40</Pri ce>
<| SBN>0130886742</ | SBN>
<Titl e>COW Progranm ng</Title>
<Aut hor >Pr adeep Tapadi ya</ Aut hor >
</ Bookl nf o>

As can be seen from the output, each of the public fields and propertiesis saved as an XML eement. The name of the
root node matches that of the class and the name of each XML element matches that of the corresponding field or
property of the class.

The XML szrialization mechanism, however, provides a flexible way to format the output. As| mentioned earlier, the
format of the XML document typicaly conformsto agiven XSD schema. Let's say, for example, that the XSD
schemafor the book is defined as follows:

<xsd: schena t ar get Nanespace=
xm ns: xsd="htt p://wwmv. w3. or g/ 2001/ XM_Schema" >
<xsd: el ement nane="book" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el emrent name="nane" type="xsd:string" />
<xsd: el ement nane="aut hor" type="xsd:string" />
</ xsd: sequence>
<xsd:attribute nane="isbn" type="xsd:string" />
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: schena>

Details about XSD schema can be found in the SDK documentation. The schema presented here essentidly states that
the root node should be named book, the ISBN should be an attribute named i sbn, and the nane and aut hor are

XML elements of type string. Given this, an ingtance of the output may look like the following:

<book isbn="0130886742">
<name>COM+ Pr ogr anmi ng</ name>
<aut hor >Pr adeep Tapadi ya</ aut hor >
</ book>

To customize the output, you can define XML seridization attributes on the class and its public dements. Table 5.4
shows some common attributes and their usage.

Table 5.4. XML Serialization Attributes

180

Attribute

Description

Xm Root To identify the cl ass or st ruct as the root node. Typically used to assign a different
element name to the root other than the class name itself.

Xm El enent The public property or field should be serialized as an XML element. Typically used to
name the element other than the field name itself.

Xm At tri but e|The public property or field should be serialized as an XML attribute. Can also rename the
attribute to a different value than the field itself.

Xm Array The public property or field should be serialized as an array. Useful when an array of

objects need to be serialized.

Xm Arraylterm

To identify a type that can be placed into a serialized array.

Xm | gnor e

Do not serialize the specific public property or field.

Using these attributes, we can revise our Book| nf o dassasfollows:

/1 Project Xm Serialize

[Xm Root (El ement Nane="book")]

public class

Bookl nfo {

[Xm Attribute(AttributeNanme="isbn")]
public String I SBN {

}

[Xm El enent (El enent Nane="nane")]
public String Title {

[Xm El enent (El enent Nanme="aut hor")]
public String Author {

[X 1 gnor e]

public f

Serializer v

| oat Price = 0.0f;

ersus Formatter

181

SERE Although SoapFor mat t er aso can be used to serialize an object into XML, formatters and
~— ¥ the XML seridizer solve two different problems. A formatter is used to seridize an object with
the utmogt fidelity. The XML seridizer, on the other hand, is used to process XML documents
thet typicdly conform to a given XSD schema It is not associated with the runtime
seridization architecture as formatters are and is controlled by a different set of attributes than
those used by the formatters.

Although the ahility to produce XML documents thet conform to agiven schemais very powerful, it aso has some
limitations that you should be aware of. One such limitation that we have dready seen isthat the private fields cannot
be seridized. Another limitation is that if an object graph contains circular references, then the object cannot be
seridized.

As XSD schemas are so frequently used to specify XML formats, the SDK provides atool caled the XML Schema
Definition Todl (xsd. exe) that lets you generate a strongly typed C# class based on existing XSD schema. For
example, assuming the XSD schema for the book is defined in file Book Schena. xsd, thefollowing commend
generates an output file, Book Schena. ¢s, containing the corresponding C# class:

xsd. exe BookSchema. xsd /c

It isaso possible to generate an XSD schema either from the XML output definition or from an assembly that defines
the type to be seridized. The following command line, for example, uses XML ingtance data from thefile
Bookl nst ance. xm and generates an XSD schemain thefile Book| nst ance. xsd:

xsd. exe Bookl nst ance. xni

The samples dediing with xsd. exe can be found under the project Usi ngXSD. Moreinformationon xsd. exe
can be found in the SDK documentetion.

Strings

No discussion about a foundation class library would be complete without talking about the capabilitiesit provides for
storing and manipulaing strings. We have dready covered some aspects of string manipulation, such as converting
bytes to strings using various encoding schemes. In this section, let's ook at some other important string manipulation
classes provided by the NET Framework.

TheSyst em St ri ng classthat we are used to by now stores astring of Unicode characters. This class offers
many useful fegtures, such as the fallowing:

Obtaining the length of the string
Checking if two gtrings are equd
Comparing two srings for alexicd rdationship

182

Concatenating one or more strings to creste a new string
Replacing a subgtring with another

Splitting agtring into an array based on addimiter
Changing cases

Trimming characters from both ends of the string

The following code excerpt illustrates many of these festures:

/1l Project Strings

/1 Length
String s1 = "hello";
Consol e. Wi teLine(sl. Length);

/1 Equality
bool b = ("Hello" == "hello"); // false
b = ("Hello".Equals("hello")); // false

/] Case-sensitive conparison
int val = String. Conpare("Hello", "hello"); // 1

/] Case-insensitive conparison
val = String. Conpare("Hello","hello", true); // O

/1 Conpare substrings "ello." Case-sensitive
val = String. Conpare("Hello", 1, "hello", 1, 4, false);// O

// Concat enation

String s2 = String. Concat("Hello", " ", "Wrld");
/'l Repl ace

String s3 = "How can | hel p you?";

String s4 = s3. Replace("I", "we");

/1 Split

String[] sArray = s3.Split(" ');

/1 Trim

String s5 =" blah ".Trim();
String s6 = blah ". TrinEnd();
Formatting

It is dso possible to format one or more objects into atextua representation. The St 1 i ng class provides a method,
For mat , to accomplish this. The following code excerpt illudtrates its use;

183

/1 Project Strings

int i = 2
int j = 4
String s = "equal to";

/] s1 ="2 and 2 is equal to 4"
String s1 = String. Format ("{0} and {0} is {1} {2}", i, s, j);

Thefirgt parameter specifies the format string. Within this format string, an object thet is passed as an argumert to
For mat can be represented in the form { N} , where N represents the zero-based index of the argument.

Note that the format string used in For nat issmilar tothatin Consol e. Wi t eLi ne. Interndly,
Consol e. Wi t eLi ne, and many other class methods that dedl with formatted strings, end up calling
String. For mat for their formatting needs.

It isdso possible to specify specid formatting codes for an argument. This can be done using the representation
{N: format St ri ng} wheref or mat St ri ng represents the string of formatting codes. Look in the SDK
documentation for applicable formatting codes for base datatypes. The help topic labeled "Formatting Strings' isa
good starting point. The following code excerpt, for example, formats an integer into adecimd (Base-10)
representation. The minimum number of digitsto display is5:

/1l Project Strings

int i = 2;

[/l s2 = "00002";
String s2 = String. Format ("{0:d5}", i);

How does St ri ng. For mat know how to represent an object in itstextua form? It doesn't. It relies on the object to
return the string representation. Syst em Cbj ect . ToSt ri ng should ring abell here.

What about the formatting codes? Syst em Cbj ect . ToSt ri ng doesn't seem to take the format string asa
parameter.

Custom Formatting

A datatype that wishes to handle formatting beyond what Syst em Cbj ect . ToSt ri ng offers must implement a
standard interface, | For mat t abl e. Hereisits prototype:

public interface | Formattabl e {
public String ToString(String format,
| For mat Provi der format Provider) {

184

When an object needs to be formatted, the runtime first checksiif the object implements| For mat t abl e. If it does,
thentheruntime cdls| For mat t abl e. ToSt ri ng on the object, passing the formaiting information. Otherwise,
itcdlsSyst em Obj ect. ToStri ng asusud.

Inour earlier code, for example, Syst em | nt 32 implements| For mat t abl e. Therefore, the runtime cals
| Format t abl e. ToSt ri ng ontheobject passing " d5" astheformat string. This method knows how to dedl
with the formatting code.

Parameter f or mat Pr ovi der isused to format strings based on specific culture, and it istypicaly nul | when
cdled by the runtime.

The following code excerpt showshow to cal ToSt r i ng directly to format an integer using the formatting code:

/1l Project Strings

/1 s = "00002";
s = i.ToString("d5", null);

The following code excerpt shows how to implement the | For mat t abl e interface. Here, method ToSt ri ng on
class Foo takes any formatting code and returns the same string in uppercase:

/1 Project Strings

class Foo : |Formattable {
public String ToString(String format,
| For mat Provi der format Provider) {
return format. ToUpper ();

/1 dient code
Foo f = new Foo();
String s = String. Format ("{0:abc}", f); // returns ABC

String to Base Datatypes

So far we have looked a representing objects, including the base datatypes, in their string form. How about
converting a string to a base datatype?

The BCL providesaclass, Syst em Conver t , that defines static methods to convert strings to many base
datatypes. For example, the following code excerpt converts a Base- 10 string representation of anumber to its integer
form:

185

/1 Project Strings
int i = Convert.Tolnt32("12", 10);

TheSyst em Convert class defines many other static methods to convert one datatype to another. Check the SDK
documentation for more information.

Mutable String Class

Y ou may have wondered why the methodsinthe Syst em St r i ng class don't modify the string, but aways return
anew copy of the string. It's because dthough string is areference type, it needs to be used as a value type.

Members that change the vaue of aclass are cadled mutators, and a class that doesn't have any mutatorsis cdled an
immutabl e class. Immutable classes are the way to creste a class that behaves like avaue class, but can't be written as
avaueclass Class St ri ng isan example of animmutable class.

There are situations in which it is desrable to modify a string without recreeting a new string on each modification.

For these situations, the BCL providesaclass, St r i ngBui | der (namespace Syst em Text). Thisclass
provides methods to remove, replace, and insert characters or strings to the existing string. The following code excerpt
illugtrates this:

/1 Project Strings

StringBuilder s = new StringBuil der("Hello");
s. Append(" Worldx"); // Hello Wbrl dx
Ss.Replace('x", "!"); // Hello World!

String sNew = s. ToString();

Summary

The BCL defines hundreds of useful interfaces and classes to boost a developer's productivity. In this chapter, we
covered many important ones. Table 5.5 summarizes some of these interfaces and classes. As an exercise, | suggest
that you cover the right-hand column and try to remember the idea behind each interface or class.

Table 5.5. BCL Interfaces and Classes

Name Description

| Enunrer abl e Represents enumerable object. Makes f or each keyword in
C# work.

| Enuner at or Represents enumerator object. Returned by the enumerable

object via Get Enuner at or method.

| Col |l ection Represents a collection. Inherits | Enuner abl e.

| Li st Represents a manageable collection. Inherits | Col | ect i

on

186

and | Enuner abl e.

| d oneabl e

Provides the semantics of deep copy on an object.

ArraylLi st

A class that stores weakly typed objects. Implements | Li st ,
| Col | ection, | Enuner abl e, and | Cl oneabl e.

Bi t Array, Queue, Sort edLi st, St ack,
StringCol | ection

Various collection types.

Col | ecti onBase

A helper class that can be inherited to create a strongly typed

collection.

Array A class that represents an array of strongly typed items. Once
allocated, the size cannot be changed.

I Di ctionary Represents a collection of key alue pairs.

Hasht abl e Dictionary holding key alue pairs.

| HashCodePr ovi der

Provides a way to define your own hash code function.

| Conparer, | Conparabl e

Provides a way to compare two objects.

Sor t edLi st

Sorted dictionary.

Li stDictionary

An efficient implementation of a dictionary useful for less than
10 items.

Di cti onaryBase

A helper class that can be inherited to create a strongly typed
dictionary.

St ream

An abstract base class for reading and writing data.

Fil eStream

Read or write data from or to a file.

Encodi ng

Exposes various encoding classes as static properties.

StreanReader, StreanWiter

Read or write data as characters and lines.

Bi naryReader, BinaryWiter

Read or write basic datatypes in binary format.

Serializable

An attribute that indicates that the object can be serialized.

| Serializable

Helps in customizing serialization on an object.

| Formatter

Represents a formatter.

Bi naryFor matt er

Serializes an object in binary format.

SoapFor matt er

Serializes an object in SOAP format.

XM Serializer

Serializes an object in XML format.

| Formatt abl e

Provides custom formatting to strings.

String

Stores a string.

StringBuil der

Mutable string class.

At this point, you should be fairly comfortable in developing programs using the BCL classes. We will be using many

of these classes in the rest of the book.

187

Reference

[Nist] Double Hashing, Dictionary of Algorithms, Data Structures, and Problems Nationd Ingtitute of Standards and
Technology. hissanigt.gov/dadsyHTM L /doublehashng.html

188

PART Il

Chapter 6. Distributed Computing

In this chapter, we look a how to develop didtributed applications under .NET that can communicate within intranets
aswdl as over the Internet. We will see how .NET remoting offers seamless remote activation and remote method
cdls, among other things. We examine how to develop intranet applications using this support. Over the Internet, Web
services have become the building blocks for distributed Web-based applications. We will look at the support offered
by ASP.NET to create and deploy Web services. By the end of this chapter, readers will be comfortable developing
goplications using the common language runtime object-remoting and will be fairly conversant with ASP.NET Web

services devel opment.

Application Domains

Operating systems typicaly provide some form of isolation between different applications running on the same
system. Thisisolation is necessary to ensure that code running in one gpplication does not adversely affect other (most
likely unrelated) gpplications.

Higtoricaly, most OSs, including Windows, achieve this isolation using process boundaries. Under this modd, there
iS one process per executing application and a crash in one gpplication cannot affect any other executing application.

The common language runtime has smilar needs for the isolation. However, there are many scenariosin which
isolation at the process boundary istoo expensive in terms of performance: A process switch involves a thread switch,
saving and restoring cal stack, and so on. For this reason, .NET advocates running multiple applications within the

Same Process.

Although multiple .NET applications can run in the same process, the need for isolation is il there. Y ou do not want
one errant gpplication to bring down the whole process. Thisisolation is achieved by means of gpplication domains.

An application domain (or AppDomain for short) is the common language runtime's equivaent of an OS processin
many respects. User code and data are isolated to the AppDomain in which they are loaded. In other words, the user
code from one AppDomain cannot be called from the user code from another AppDomain directly and data cannot be
shared directly between application domains.

A process can have multiple gpplication domains. However, an gpplication domain cannot span multiple processes,
just as a process cannot gpan multiple machines. This relationship isillustrated in Figure 6.1.

189

Figure 6.1. Application domains.

PROCESS P1 PROCESS P2

AppDeomain X Applomain AppDomain £

|ﬁ.559m|::|}rﬁ. I | Assambly C I m
T

Under .NET, assemblies can be loaded and the user code can be executed only within the context of an application
domain. When the common language runtime is first loaded within a process, it automaticaly creetes a default
gpplication domain to execute the user code. However, more application domains can be created (within the same
process) either by the common language runtime hot or by the user code.

An gpplication domain has afriendly name, assigned to it at the time of its creetion. The default gpplication domain
gets its name from the filename of the first assembly it loads.

The following code excerpt demonstrates obtaining the friendly name of an application domain:

/1 Project AppDonai n/ AppDonai nNane

class MyApp {
public static void Min() {

Consol e. Wi t eLi ne(AppDomai n. Cur r ent Donai n. Fri endl yNane) ;
}

The BCL provides aclass, AppDonai n (namespace Sy st em), to create and manage application domains. This

class has agtatic property, Cur r ent Dorrai n, that returnsan AppDornai n object representing the application
domain where the method is called. The preceding code displaysthe Fr i endl yNare property for the current
goplication domain.

It is possible to programmatically create new gpplication domains. Thisistypicaly done by applications hogting the
common language runtime. For example, ASP.NET hogts dl the ASP.NET applications on the machine within a
single process, each application is hosted in a separate gpplication domain. However, .NET provides the necessary
isolation among the gpplication domains.

Listing Application Domains

N Isthere away to list dl the gpplication domains within a process?

- -

Hereisthe trick. Just run the command-line debugger (cor dbg. exe) that comeswith the
SDK and enter the command pr 0 at the prompt. This command displays dl the managed

190

processes running on the system along with the list of gpplication domains for each process.

You can dso get the list of loaded assemblies within an application domain. Again, using

cor dbg, attach to the process that you are interested in by typing thecommanda <pi d>,
where pi d isthe process identifier. Then you can type ap to dump aligt of dl the application
domains within the process along with their |oaded assemblies. Remember to detach the
process (command de) before you quit the debugger. Otherwise, the attached process
terminates prematurely.

Thefact that application domains are isolated from each other dso makes it possible to unload an gpplication domain

without causing the process to become unstable. Y ou can use static method AppDorrai n. Unl oad for this purpose.
If you are writing a custom runtime host, you candso use| Cor Runt i neHost : : Unl oadDonai n tounload an

gpplication domain. Check the SDK documentation for more information on these APIs.

So, why would you unload an gpplication domain? Well, sometimes you may wish to unload an assembly, perhaps for

the purpose of upgrading it. However, an assembly, once loaded, cannot be unloaded directly. A type from one loaded

assembly could be using a type from another loaded assembly. It is not possible to unload an assembly without
unloading al other assembliesit isinteracting with. However, as assemblies are loaded in the context of an
gpplication domain, unloading the gpplication domain can unload all the assemblies within the application domain. An
exception to this case is domain-neutra assemblies (covered shortly). Domain-neutra assemblies are not unloaded
until either the processis shut down or the host unloads the common language runtime itself by using

| Cor Runt i neHost : : St op method.

It should be noted that the default domain will not be unloaded until the processis shut down or the host unloads the
common language runtime,

Global Exception Handler

We know that under .NET, an exception thrown from amethod, if not caught by any of the calersin the cdl chain,
will result in terminating the application abruptly. Wouldn't it be a boon for forgetful programmersto have a
mechanism that will let you catch any uncaught exceptions? Y ou can then ether ded with the exception or do some
housekeeping work and quiit the program more gracefully. Fortunately, .NET provides such amechanism. You can
define an exception handler a the application domain level. Any uncaught exception within the application domain
will get caught by this handler. The following code snippet illustrates this mechanism:

/'l Project AppDonmai n/ Excepti onHandl er

class M/App {
static void MyExcepti onHandl er (Cbj ect sender,

Unhandl edExcepti onEvent Args e) {
Consol e. Wi teLine(e. ExceptionCbject.ToString());

191

public static void Min()
{
/1 add an exception handler to the current appdomain
AppDomai n ad = AppDonai n. Cur r ent Dornai n;
ad. Unhandl edExcepti on += new
Unhandl edExcept i onEvent Handl er (MyExcept i onHandl er) ;

/1 throw an exception
t hr ow new Excepti on("Houston! W have a problem");

This program throws an exception that is not caught by any cdler on the cal chain. However, the program passes the
exception to the exception handler, which gracefully writes a message to the console and returns.

Note that the exceptions are caught at the gpplication domain level. If you have more than one gpplication domain
within your process, you may wish to register the exception handler for each application domain.

Domain-Neutral Assemblies

Assemblies are loaded within the context of an gpplication domain. If asingle gpplication is used by severd
goplicationsin the same process, by default the common language runtime will 1oad multiple copies of the assembly,
one for each domain in which the assembly is used. To maintain isolation, each domain getsits own copy of the user's
code and data.

When the common language runtime is being hosted, it is possible to configure the runtime such that the assembly's
code (but not its data) can be shared by dl domains referencing the assembly. This reduces the amount of memory
used at runtime. An assembly whose code is being shared by dl domainsin the processis said to be domain-neutral .

A host can specify the runtime startup configuration viast ar t upFl ags parameter to Cor Bi ndToRunt i neEx
(Chapter 4). The choices are:

STARTUP_LOADER_OPTIMIZATION_SINGLE_DOMAIN: Do not load any assembly as domain- neutral.
This setting is commonly used when the host is running just a sSingle application in the process.
STARTUP_LOADER_OPTIMIZATION_MULTI_DOMAIN: Load al the assemblies as domain-neutrd.

This setting is useful when multiple domains within the process are likely to run the same code.
STARTUP_LOADER_OPTIMIZATION_MULTI_DOMAIN_HOST: Load only the strong-named

assemblies as domain-neutrd. This setting is useful if the hogt intends to run a different gpplication in each

of the domains. For example, ASP.NET runs many different gpplications. However, most of these

applications are likely to use some common strong-named assemblies such as Syst em WWebFor ns and

Syst em Dat a. By using this setting, ASP.NET can optimize the use of shared assemblies.

To decide whether or not to load assemblies as domain-neutral, you must make atradeoff between reducing memory
use and performance. Although domain-neutral code consumes less memory, it runs a bit more dowly. The dower

192

performance is related to the way in which the assembly's stetic variables and methods are accessed. The common
language runtime hes to ensure that only the user-code gets shared but not the user-data. To make sure that data
doesn't lesk across domains, the common language runtime maintains a separate copy of static variables per domain.
The common language runtime also maintains tables that map a given caler to the appropriate copy of the static
variables. Theindirection through these lookup tables causes the code to run more dowly.

It should be noted that the above optimization settings do not affect non-static data and methods. For these fields,
performance is affected by how the objects are marshaded across the domains, which we will cover later.

MsCorLib.DLL is Special

_...._1 In chapter 4, | mentioned that the Base Class Library (BCL) is spread over two assemblies
—

E VBCor Li b. DLL and Syst em DLL. Itisinteresting to know why the BCL was not placed

in just asingle assembly.

The common language runtime adways loads VSCor Li b. DLL asdomain-neutrd,

irrespective of the loader optimization settings. Moreover, the execution engine

(MsCor Vks. DLL and MsCor Svr . DLL) cachesall the entry-points and offsetsinto

Vs Cor Li b'scode and metadata. So Microsoft wanted to keep Vs Cor Li b assmdl as
possible. Asaresult, MSCor Li b isnot dlowed to have references to any assemblies. Any
typepresentin Ms Cor Li b hasadl itstrangtive closures present in Ms Cor Li b. For example,
Vs Cor Li b implemented type Syst em St ri ng referstotype Cul t ur el nf o and
Encodi ng. Therefore, both these types are also defined in Ms Cor Li b. All other BCL types
that end up accessing external assemblies, directly or indirectly, were put in Syst em DLL.

Let's recap what we have learned so far about application domains. A process contains one or more gpplicaion
domains. The application domains can be loaded and unloaded dynamically. Assemblies are loaded and objects are
housed within the context of an application domain. Objects from one gpplication domain cannot interact directly with
objects from another application domain.

Under the NET Framework; it turns out that gpplication domains are not the lowest level of isolaion. Thereisyet a
finer leve of isolation within an application domain. Thisisolaion is provided by an entity cdled the context.

Contexts

Under .NET, aclass can be configured to require certain services such as synchronization, transaction, just-in-time
activation, security, and so on. These configuration settings together define a runtime environment for the instances of
the dassto live in. This runtime environment is referred to as the context and the configuration settings are cdled
context attributes.

193

A context holds one or more like-minded objects. Whenever anew object is created, the runtime examines whether
the creator's context is compatible with the context attributes specified on the object. If the context is found to be

compatible, the object is created in this context. Otherwise, the runtime crestes a new context and places the object
there. Once created, the context remains fixed and immutable until al the objects within the context are deactivated.

An application domain holds one or more contexts. When an gpplication domain is crested, the runtime creates a
default context within the AppDomain. Subsequently, more contexts may get created within the domain as more
objects are created. The relationship among objects, contexts, and gpplication domainsisillustrated in Figure 6.2.

Figure 6.2. Objects, contexts, and AppDomains.

Default AppDomain AppDomain 2
Default Context Default Context
o &
o
Context 2 Context 2
O O
o o

Note that objects live in contexts. When we refer to an object from an AppDomain, it automatically implies an object
from a context within an AppDomain. Also note that a context cannot pan multiple gpplication domains, just asan
gpplication domain cannot span multiple processes.

The .NET Framework encapsulates the context environment in aclass caled Cont ext (namespace

System Runt i ne. Renot i ng. Cont ext s). The context that athread is currently executing under can be
obtained using a static method, Thr ead. Cur r ent Cont ext (class Thr ead isdefined under namespace
Syst em Thr eadi ng). Thefollowing code excerpt displays the context identifier for the current context. A
context identifier is a numeric vaue that uniquely identifies a context within an gpplication domain.

/1 Project AppDonai n/ ContextlD

public static void Min() {
Cont ext cur = Thread. Current Cont ext ;
Consol e. WiteLine("Context I D={0}", cur.Contextl|D);

194

When this code is executed, it outputs a value of 0, which is the context identifier for the default context. Note that the
context identifier is unique only within the scope of an gpplication domain. Two contexts from two different
gpplication domains can have the same identifier.

Now that we have afairly good understanding of contexts and application domains, let's take alook at how objects
can communicate across contexts (and application domains).

Marshaling

Earlier, | stated that .NET lets multiple gpplications run within asingle process under different application domains
and that the runtime provides isolaion between gpplication domains. Let's see how thisis done.

To provide isolation, the runtime ensures that an object from one gpplication domain cannot directly invoke a method
on another object that belongs to a different AppDomain. For the same reason, an object from one AppDomain cannot
be directly passed to another AppDomain. This holds true irrespective of whether the domains reside in the same
process, two different processes on the same machine, or processes on two different machines. From the runtime's
perspective, an object that belongs to a domain that is different than that of the caler is deemed aremote object and is
treated the same way no matter where the domain resides.

Methods on a remote object thus cannot be called directly, so how does one develop a distributed application if one
cannot communicate across processes and across machines? |s there some indirect way to communicate with the
remote object?

.NET remoting has been designed so that you don't really need to do anything specid in your code to dedl with remote
objects. Jugt cdl the method on the remote object asif you are caling amethod on alocd object, passin the method
parameters, and obtain the method result. The infragtructure hides the complexity of caling methods on remote

objects and returning the results.

Behind the scenes, when a remote object is created or an object is passed to another domain as a method parameter,
the runtime transforms the object into ablock of memory suitable for transmitting to the other context. This processis
referred to as marshaling. Subsequently, the importing domain can unmarsha the block of data; thet is, decode it to
obtain anew object that is a copy of the origina object.

Strictly speaking, cross-domain marshding automatically implies cross-context marshaing. However, if the contexts
belong to the same AppDomain, and if the object exhibits certain characteridtics, the runtime may eiminate
marshaing atogether. Essertialy, the object can be accessed directly from any context within the AppDomain. Such
an object is caled a context-agile object. Context-agile objects live in the default context of the AppDomain. The
behavior of a context-agile object isilludrated in Figure 6.3.

195

Figure 6.3. Context-agile object.

AppDomain C
Context | Context 2
r N
o -0
Object
% S
Context 3 Context 4

Essentidly, the role of an AppDomain is to form the boundary for the context agility of an object (and to house

contexts).

For marshaling purposes, .NET classifies objects into three distinct groups: marsha- by-vaue, marsha- by-reference,
and nonremotable. Let's examine each of them. For our discussion, we may loosdly interchange the terms AppDomain
and context, but the idea should be clear.

Marshal-by-Value Objects

An object that ismarked withthe[Ser i al i zabl e] custom attribute is referred to as a marshal-by-value (MBV)
object. When such an object is passed as a parameter to aremote AppDomain, the runtime serializes the object and
transports it to the destination AppDomain, where the datais then deseriaized to create a duplicate copy of the

origina object. Recal from Chapter 5 that the seridization mechanism uses reflection to seridize the member fidds

and that it is possible to customize the default seridization mechanism by further implementing the

| Serializabl e interface

Once the copy isin the destination AppDomain, any cal to the object within the destination AppDomain is
automatically directed to the copy.

The behavior of MBV objectsisillugtrated in Figure 6.4.

196

Figure 6.4. Marshal-by-value object.

Destination AppDomain Source AppDomain

Copy W MBV Obiject

)

You should use MBYV objects when it is desirable to move the entire state of object to the target AppDomain. This
reducestime- and resource-consuming round trips across network, process, and AppDomain boundaries. Keepin
mind, though, that the cdler iswarking on the copy; any change made in the date of the copy is not reflected in the
origina object. Likewise, any change made to the origina object is not reflected in the copy.

Note that MBV objects are duplicated only when they cross their home AppDomain. Within an AppDomain, MBV
objects are context-agile. Also note that al the base datatypes under NET aremarked as[Ser i al i zabl e]; thatis,

these datatypes are dways marshaed by vaue.
Marshal-by-Reference Objects

An object that is derived from the standard class Mar shal By Ref Qbj ect , either directly or indirectly, is referred
to as a mar shal-by-reference (MBR) object. When such an object is passed from the origind AppDomain to a
different AppDomain, the runtime trangparently creates a proxy object in the destination AppDomain and returns to
the caler areference to the proxy. The proxy object represents the actud object; that is, it implements the same
methods and properties as the actua object. However, each time the caller invokes a method on the proxy, the runtime
intercepts the method call and performs the following operations:

Marsha the parameters.

N

Switch to the object's actua context or AppDomain and apply any context-specific palicies (eg.,
synchronization, transaction, etc.).

Unmarsha the parameters.

Execute the call.

Marshd the return vaue,

Switch back to the caller's context.

Unmarshd the return value and make it available to the cdler.

N o o M w

The behavior of MBR objectsisillugtrated in Figure 6.5.

197

Figure 6.5. Marshal-by-reference object.

Destination AppDomain Source AppDomain

Proxy o MBR Object

Let's write a program to create a new application domain and to display information about the default application
domain aswell asthe newly created gpplication domain.

The following code excerpt defines a class Foo containing amethod Di spl ayDonai nl nf o that displaysthe
goplication domain information:

/1 Project AppDonai n/ Renot abl eChj ect

public class Foo : Marshal ByRef Chj ect {
public void D splayDomai nl nfo() {
String s = "Donmai n="
+ AppDonai n. Cur r ent Domai n. Fri endl yNane
+ " Thread | D="
+ AppDonai n. Get Curr ent Thr eadl d()
+ " Context |D="
+ Thr ead. Current Cont ext . Cont ext | D
Consol e. Wit eLine(s); }

In this code, class FoO isderived from Mar shal By Ref Obj ect , whichimpliesthet any indtance of Foo isan

MBR object. Method Di spl ayDomai nl nf o displaysthree fidds: the friendly name of the current domain, the

identifier of the thread executing the code, and the context identifier of the current thread.

Thefallowing is our main gpplication logic. Here, two ingtances of Foo are created, one in the default domain and
onein adomain caled My NewAppDonai n:

/'l Project AppDonai n/ Renot abl eChj ect

class M/App {
public static void Min()
{

/1 Display default domain info

198

Foo fDefault = new Foo();
f Def aul t. Di spl ayDonai nl nf o();

/'l Create a new appdomain. Nane it M/NewAppDonai n
AppDomai n ad = AppDonai n. Cr eat eDomai n(" MyNewAppDomai n") ;

/1 Load Renot abl eObj ect. exe assenbly in the new appdonmai n
/1 and create an instance of Foo
Foo f New = (Foo)
ad. Cr eat el nst anceAndUnwr ap(" Renot abl eCbj ect”, "Foo");
f New. Di spl ayDonai nl nf o();

Themethod Cr eat el nst anceAndUnwr ap creates an instance of specified type Foo from the specified
as=mbly Renot abl ehj ect . exe inthe domain on which the method is called. However, what gets stored in
thevaridblef Newis aproxy object. If you compile this code as Renot abl eCbj ect . exe and executeit, you
will witnessthat the call to Di spl ayDorrai nl nf o on f New takes place in the newly created application domain.
Thisishow .NET provides isolaion among application domains.

Asan exercise, remove Var shal ByRef Obj ect asthe parent classon classFoo and add the[Ser i al i zabl e]
attribute instead. When you compile and execute the new code, bath the callsto Di spl ayDonai nl nf o happenin
the default AppDomain.

Wrapped Objects

"\ You may be wondering what the AndUnwr ap part of

=— | AppDonai n. Cr eat el nst anceAndUnwr ap stands for. When an object is passed from
one AppDomain to another, typicaly the metadata for the object's type gets loaded in the new
AppDomain. However, the NET Framework provides an optimization wherein you can passa
different object that wraps the origina object such that loading of metadatais deferred until the
object is unwrapped.

The wrapped object is represented by the class Obj ect Handl e. You can obtain the
hj ect Handl e by cdling AppDonai n. Cr eat el nst ance and you can cal
hj ect Handl e. Unwr ap to obtain the original object (or its proxy if caled from a
different AppDomain).

Y ou may be wondering what the behavior would be if an object inheritsfrom Mar shal ByRef Obj ect andis
marked with the [Ser i al i zabl e] attribute. In this case, inheriting from Mar shal By Ref Obj ect takes

precedence. A remote domain receives a proxy object.

199

It must be clear that when you make a cal on the proxy of an MBR object, the runtime intercepts the call and executes

the call in the MBR object's AppDomain. Thereis just one exception to thisrule ny static method onthe MBR class
is dways executed in the cdler's AppDomain. Thisis because static methods are not associated with an object, but the
dassitsdf. Theinterception occurs only if an object is accessed.

Application Domains and Threads

SERE When you execute Renot abl eChj ect . exe, notice that the thread identifier displayed for

—_— both application domainsiis the same because threads do not have any affinity to application
domains (or contexts). Application domains and contexts are spatid objects, whereas threads
aretemporal objects. A thread can traverse multiple contexts and application domains. Multiple
threads can execute over the same gpplication domain.

When an gpplication domain is being unloaded, all threads thet are executing in the domain
must be unwound out of the domain. For any thread traversing through the domain, the runtime
throws an exception of type Thr eadAbor t Except i on. For theladt transition out of the
domain for agiven thread, this Thr eadAbor t Except i on isturnedinto an

AppDonai nAbor t Excepti on.

Context-Bound Objects

At this point, it should be reasonably clear that the crestor of an MBR object gets either araw reference (if the object
is created in the creator's AppDomain) or aproxy (in adifferent AppDomain).

Within an AppDomain, the context agility of an object can create problems in certain cases. Let's say the object has
certain context attributes. For proper operation, the object depends on the context (the runtime environment) in which
it was created. If araw reference of this object were shared with another context in the same AppDomain, for example
by using agloba variable to store the reference, the context that is used during method execution isthat of the cdler,
not that of the object. This results in acompletely unpredictable behavior. For example, if the object relied on the

same transaction service or security service to be available during method execution, it might not get one. Worse yet,

it may get the caler's settings (which may be completely different). Almost al configured services would malfunction

if the call were processed in the wrong context.

If the cdller, however, had areference to the proxy object instead, the runtime could intercept any call on the proxy
and run appropriate configuration services before invoking the call on the method.

To prevent the context agility of the object, the NET remoting architecture provides a base class,

Cont ext BoundObj ect (namespace Syst em). Any object that isbased on Cont ext Bound(hj ect is
context bound; that is, the object can never leave the context it is created in. Any other context, even within the same
AppDomain, can only get aproxy to this object. This behavior isillustrated in Figure 6.6.

200

Figure 6.6. Context-bound object.

Context 1 Context 2
Proxy Proxy
Pr Context-Bound
o Object
Context 3 Context 4

Any method cal made on the proxy isintercepted by the runtime. The subsequent operations are similar to thet of an
MBR object, as discussed earlier. As amatter of fact, the Cont ext BoundChbj ect dassitsdf isderived from

Mar shal ByRef Obj ect .

Y ou define your own context-bound dass by inheriting from Cont ext BoundObj ect . In addition, you can
pecify one or more context attributes on the class. Thisisillugtrated in the following code excerpt:

/'l Project Contexts/ContextAttributes

[Synchroni zat i on(Synchroni zati onAttri but e. REQUI RED)]
public class Foo : ContextBoundChject {
public void D splaylnfo() {
Consol e. WitelLine("Foo Context ID: {0}",
Thr ead. Current Cont ext. Cont ext I D) ;

This code uses a context attribute, Synchr oni zat i onAt t r i but e (namespace

System Runt i ne. Renot i ng. Cont ext s). Thisattribute is used to provide synchronized access to an object.
Thevdue Synchroni zat i onAt tri but e. REQUI REDtdlsthe runtime that an instance of Foo should be
crested in acontext that participates in synchronization. Such a context guarantees that no two threads can enter the
context concurrently. One thread has to exit the context before another thread can enter it. We will learn more about
synchronization in Chapter 8.

When to Use Context-Bound Objects

201

_,..J When should you use Cont ext BoundObj ect indead of Mar shal ByRef Cbj ect ?If
= I you intend to specify any context atributes on the class, then you should derive your class from
Cont ext BoundQbj ect . AsaCont ext BoundCbj ect inheritsfrom
Mar shal ByRef (bj ect , you get dl thefeaturesof Mar shal By Ref Cbj ect aswel.

For al other remotable cases, you can use Mar shal By Ref Cbj ect or
[Serializabl e] asappropriate.

Ingtantiating a context-bound classis no different than ingtantiating any other class. Y ou can use the sandard new
keyword in C#, as highlighted here:

public static void Min() {
Consol e. WiteLine("Default Context |1D={0}",
Thr ead. Current Cont ext . Cont ext | D) ;
Foo f1 = new Foo();

Here isthe partia output from the application:

Def aul t Context |D=0
Foo Context |D=1

When this codeisrun, Mai n isinvoked from the default context (represented by the context ID=0). When Mai n
crestes an instance of FOO, the runtime checks if the cdler's context is competible with the context requirements for

Foo. Asthe cdler's context is not set to participate in synchronization, the runtime creates a new context, places the

object in the new context (represented by context ID=1), and returns a proxy to the caller.

At this point, it isworth mentioning that there is yet another way to creste ingtances using .NET. The BCL definesa
class, Act i vat or (namespace Syst em), to ded with object activatior issues. Using the static method

Act i vat or. Cr eat el nst ance, you can creste anew object. The following two lines of code are equivaent in

functiondity:

M Eor now, you can assume instantiation and activation are the same. The difference will become clear

when we discuss the concept of object pooling in a later chapter.

Foo f1 = new Foo();
Foo f2 (Foo) Activator. Createl nstance(typeof (Foo));

Aninteresting overload of Act i vat or . Cr eat el nst ance isthe onethat lets you define one or more context

attributes during activation. The attributes can be built in an array and passed as a parameter to the method. The
following code excerpt illustrates this:

202

Bar bl = (Bar) Activator.Createl nstance(
t ypeof (Bar),
nul |,
new obj ect[] {new Synchroni zati onAttri but e(
Synchroni zati onAttri bute. REQUI RES) });

Thefirs parameter to Act i vat or . Cr eat el nst ance isthetype of the object to be created. The second
parameter is used to pass arguments to the congtructor of class Bar . Passingavaduenul | , aswe have done here,
invokes the default constructor. The third parameter is used to specify the required context attributes. In our case, we
passjust one attribute, Synchr oni zat i onAtt ri but e.

Okay, we are done with context-bound objects. In alater chapter on enterprise services, we will learn more about an
important derivation of Cont ext BoundQbj ect , Ser vi cedConponent . Thisclass|ets you use COM+

runtime services such as transaction and object pooling.

Nonremotable Objects

An object that is neither inherited from Mar shal By Ref Obj ect nor marked withthe[Ser i al i zabl e]
attribute is a nonremotable object. These objects can never leave their domain. Trying to pass such an object to a
remote domain resultsin an exception of type Ser i al i zat i onExcept i on.

Remoting Architecture

Establishing communication between two objects from two different domains or contexts, either on the same machine
or on two different machines, is a common programming task. Traditionaly, this requires in-depth knowledge of
transport protocols, communication APIs, security mechanisms, and so on. The .NET Framework, however, makes it
easy to develop such distributed gpplications by providing a number of services, utility classes, and tools. Figure 6.7
illustrates the process of generd remoting.

Figure 6.7. Remoting model.

[Client Object j

o~

Under .NET remoting, aclient smply creates an instance of the server class. The remoting layer creates a proxy
object and returnsiit to the client. When the client makes a method cdl on the proxy, the remating layer (in the client

Chennel

s ()

Remoting Layer
Remacting Laryer

203

domain) intercepts the call, packs the call information into amessage, and sends it over acommunication channd to
the server domain. The remoting layer in the server domain picks up this message, unpacksit, and invokes the
appropriate method on the real object.

Channels

Channd s trangport messages between the remoting boundaries. A channd can either listen to an endpoint for inbound
messages, send outbound messages, or both. The architecture dlows you to plug in awide range of protocols.

The .NET Framework provides channel classes to dedl with some frequently used transport protocols such as TCP and
HTTP. The TcpChannel dass (namespace Syst em Runt i ne. Renot i ng. Channel s. Tcp) transportsthe
stream to the destination using TCP. By defaullt, it uses a binary formatter (see Chapter 5) to seriaize amessageinto a
binary sream. The Ht t pChannel class (namespace Syst em Runt i ne. Renot i ng. Channel s. Ht t p)
transports the data streeam over HTTP. By defaullt, it seridizes messagesusing the SOAP ML formatter. All the
required SOAP headers are added to the stream before the data is transported.

It is possible to configure the TCP channd to use the SOAP formatter or the HTTP channel to use the binary formatter.
The architecture is open enough to support even third-party formatters.

Channd dassessuch as TcpChannel and Ht t pChannel implement the channd logic for the dient side aswell
asfor the server side. The NET Framework aso providesthe classes TcpSer ver Channel and

Ht t pSer ver Channel , which implement only the server-side channel logic. Likewise, the classes

Tcpd i ent Channel andHt t pCl i ent Channel implement only the dient-side channd logic.

At this paint, it is worth understanding the activation mode! of the NET remoting architecture. .NET classifies remote
objects as either server-activated objects or client-activated objects, depending on who controls the lifetime of the
object. Let'slook at the server-activated objectsfirdt.

Server-Activated Objects

A server-activated object is an object with alifetime that is directly controlled by the server. In this mode, the server
goplication publishes the information on atype and assignsit a name. Although not necessary, the nameis generdly
human-readable. Clients can use this name to look up the remote object. For this reason, a server-activated object is
aso referred to as awell-known object (WK O). The well-known name is referred to as the Uniform Resource
Identifier (URI).

Consider the following code excerpt, which definesaclassHel | oUser that we wish to expose as a server-activated
type:

/1 Project SingleCallObjects/Geeting
public class Hell oUser : Marshal ByRef Obj ect {
public String GetGeeting(String user) {

String retVal = String. For mat (
"Hello {0} from{1}:{2}",

204

user,

AppDonai n. Cur r ent Dorai n. Fri endl yNane,

t hi s. Get HashCode()) ;
Consol e. WitelLine(retVal); // debugging aid
return retVal;

In this code, method Get Gr eet i ng takes asinput auser name and returns aformatted string containing a greeting,
the user name, the friendly name of the domain executing the method, and the hash code of the ingtance of
Hel | oUser . The hashcode can serve as a unique identifier for the ingtance.

Notethat classHel | oUser isinherited from Mar shal By Ref Cbj ect . Without this, our discussion about
distributed dient erver computing would not make much sense,

Compile this code into alibrary assembly named G- eet i ng. dI | . Let'snow exposeHel | oUser asa
server-activated type, as shown in the following code excerpt:

/'l Project SingleCallObjects/ M/Host

cl ass MyApp {
public static void Main() {

Channel Servi ces. Regi st er Channel (
new TcpSer ver Channel (8085));
Renot i ngConfi gurati on. Regi st er Vil | KnownSer vi ceType(
Type. Get Type(" Hel | oUser, Greeting"),
"Get Hel | 0",
Vel | KnownChj ect Mbde. Singl eCal I');

/'l Keep the server alive
Consol e. WiteLine("Press any key to quit server");
Consol e. Read() ;

To expose aWKO for remoting, a server gpplication has to go through the following generd steps:

1. Regigter one or more server-sde channels for communication.
2. Regiger theidentity of the remote types.
3. Provide amechanism to keep the server goplication dive.

Firgt, the server application has to register one or more server-sde channds with the remoting layer. These are the
channels on which remoting will intercept calls for the WKO. The framework provides a class,
Channel Servi ces (namespace Syst em Runt i ne. Renot i ng. Channel s), that can be used to perform

205

this and many other remoting-related operations. Method Regi st er Channel on this class can be used to register
achannd. In our example, we registered the TCP channel at port 8085.

A channdl that isregigtered is globd only within the context of the registering AppDomain. Each AppDomain is
required to register the channd exclusively; that is, if the AppDomain intends to supply objects for remoting.

Also note that a port number cannot be shared between two AppDomains on the same machine. If you have aclient
and aserver gpplication that are running on the same machine, make sure that they use different port numbers.

Regigtering just the channdsis not enough. All remote types aso have to be registered with the NET remoting
framework before clients can access them. The framework provides aclass, Renot i ngConf i gur ati on
(namespace Syst em Runt i ne. Renot i ng), for this purpose. In our code, we called a static method
Regi st er Wl | KnownSer vi ceType onthisclassto register type Hel | oUser and gaveit the URI
Get Hel | 0. Thelast parameter to Regi st er Vel | KnowSer vi ceType dictates the mode of the
server-activated object and is discussed shortly.

Obtaining Type Information

— Recdl from Chapter 3 that under .NET, atype can be represented by a display name. The
~ K syntax for the display nameis:

Nanmespace. TypeNane <, assenbly nane>

To obtain type information ontype Hel | oUser fromassambly G eet i ng. dl | , onecan
cal agatic method, Syst em Type. CGet Type, passing it the display name Hel | oUser ,
@ eet i ng asaparameter. This method returns an instance of class Syst em Type, aclass
t hat encapsulates dl the information about atype.

Note that under C#, the type information can aso be obtained using thet ypeof keyword.
However, to use this keyword, the assembly containing the type has to be referenced during the
compilation.

Given the fact thet the type Hel | oUser has been published as Get Hel | 0 on TCP port 8085, clients can access an
inganceof Hel | oUser usngthelookup stringt cp: / / machi nenane: 8085/ Get Hel | o, where

nmachi nenane isthe IP name of the machine. Thislookup string is referred to as the Uniform Resource Locator
(URL) of the remote type. The syntax of the URL is dictated by the channel in use and can be found in the SDK
documentation.

Thefind couple of lines of the preceding code implement alogic to keep the server dive until you press any key on
the keyboard.

Compile this code as an assembly, MyHost . exe.

206

Y ou may be wondering why we broke the server-side logic into two different assemblies, G- eet i ng. dl | and
MyHost . exe. From adeployment perspective, doesn' it seem logicd to create just one assembly with dl the
necessary code? If you examine the server regidtration codein MyHost . ¢S, you will seethat thelogic is so generic
that it can be used to host more than one type. Thus, you can have your types spread over many assemblies but il
host them using one generic hogting executable.

Thereis yet another reason for this separation. It is aso possible to publish the typesfrom G- eet i ng. dl | inother
hosts, such as ASP.NET, diminating the need for writing a separate host application. Later, we will see how this can
be done.

Let's now look a how the client can activate and use the remote object. The following is the relevant code excerpt:

/1 Project SingleCallObjects/ Wd i ent

class M/App {
public static void Main() {

Channel Servi ces. Regi st er Channel (new Tcpd i ent Channel ());

Hel | oUser user = (Hell oUser) Activator. Get Qoj ect (
t ypeof (Hel | oUser),
"tcp://1ocal host: 8085/ GetHel | 0");

String greeting = user.GetG eeting("Jay");
Consol e. WitelLine("Return value: {0}", greeting);

greeting = user.GetGeeting("Jay");
Consol e. WiteLine("Return value: {0}", greeting);

Before activating a remote object, aclient hasto register a client-side channel that it wishesto use. Thisis done by
cdling thefamiliar Channel Ser vi ces. Regi st er Channel method.

It is not necessary for aclient to register achannd explicitly. The default ingtdlation of the runtime setsup a
mechine-wide configuration that makes a TCP channel or an HT TP channe registered as necessary when activating
the remote object. For details, look into the
configuration/systemrun-tine.renoting/application/channel s stionintheglobd
corfiguraion file (Machi ne. Conf i g).

Once aclient channd is registered, the remote object is activated by caling a static method,
Acti vat or . Get Obj ect . Thefirst parameter to the method specifies the type of object that the client is
interested in and the second parameter specifies the URL of the remote type.

When CGet Obj ect iscaled, aproxy object is created and returned to the client. This proxy object internally holds
necessary information for communication, such as the type of channel used, the port number of the channel, the name

207

of the remote machine, and so on. However, the client can treat the proxy object as though it is a direct reference to
the remote object.

It isinteresting to note that even though the runtime creates a proxy object on the call to Get Obj ect , it does not
creete the corresponding remote object on the server, at least not yet. The remote object is created only when the first
method call is made on the proxy object.

Compiletheclient codeas MyCl i ent . exe and executeit. Be sureto run MyHost . exe first. For our sample,
both programs need to run on the same machine (machine namel ocal host isastandard DNS name representing
the loca machine).

Here is the output from our client program:

Return value: Hello Jay from M/Host. exe: 58
Return val ue: Hello Jay from M/Host. exe: 61

The dient gpplication cdls Get G eet i ng twice on the proxy object and displays the string returned from each call.

The domain namereturned is My Host . exe, confirming that the code was actudly executed in the server
application.

Also note that the hash code of the remote object returned is different for each method cal. Thisimpliesthat two
different instances of the remote type were crested even though only one proxy object was activated. How isthis

possible?
Single-Call and Singleton Objects

Under .NET, a server-activated object can be published in two possible modes, single-cdl and sngleton. Each mode
indirectly lets the server gpplication control the lifetime of the remote object. A single-cdl object mode implies that
the remote object is created on each method cdl and torn down after the call returns. A singleton object mode implies
that the remote object is crested just once on the first method cal and is reused on subsequent method cdls.

The mode of the object is defined at the time of registering the object by calling
Regi st er I | KnownSer vi ceType. Thelast parameter to this method can be either

Vel | KnownCbj ect Mode. Si ngl eCal | for dngle-cdl mode or VI | KnownChbj ect Mode. Si ngl et on

for sngleton mode.

Our earlier program sample registered the type in the single-cal mode, so you saw two different instances of the
remote type. If you edit MyHost . ¢s and change the object mode to singleton, as follows, then you will see that the

hash code returned is the same for both the method calls made by the client:

/1l Project SingletonChjects/M/Host

Renot i ngConfi gurati on. Regi st er il | KnownSer vi ceType(
Type. Cet Type("Hel | oUser, Greeting"),
"Get Hel | 0",

208

Vel | KnownCbj ect Mode. Si ngl et on) ;

At this point, it is worth understanding the usage implications of each of the object modes. For asingle-cal mode, asa
new object is created on each method cal, the client cannot use it to store instance-specific data between two method
cdls. Even for asingleton object, it is not agood idea to store instance- gpecific data between method cdls. Asthe
same object is shared among dl the clients, there is no guarantee that the data set by one client will not be overridden
by ancther client. Moreover, aswe will see later, thereis dso alifetimeissue to ded with. Server-activated objects,
dngle-cal or singleton, are generaly designed to perform atomic operations; the client sends as method parameters
any datathat is needed by the server and gets back the result in asingle method call.

If instance- specific data should be shared between method cdls, then the server must publish client-activated types
instead.

Client-Activated Objects

Client-activated objects (CAOs) are objects with alifetime that is controlled by the client, just as they would be if the
object were local to the client.

A sarver publishes a client-activated type using a static method,
Renot i ngConfi gurati on. Regi st er Acti vat edSer vi ceType, as shown in the following code

excerpt:

/'l Project dientActivated/ M/Host

class M/App {
public static void Main() {

Channel Servi ces. Regi st er Channel (
new TcpSer ver Channel (8085));

Renot i ngConfi gurati on. Regi ster Acti vat edServi ceType(
Type. Cet Type("Hel | oUser, Geeting"));

/'l Keep the server alive
Consol e. WitelLine("Press any key to quit server");
Consol e. Read() ;

This code publishes our earlier defined classHel | oUser (inassembly Gr eet i ng. dl |) asaclient-activated type.
Thisclassisavailable at TCP port 8085, which can be represented in URL form as
t cp: // <machi nenane>: 8085.

A dient indantiates a dient-activated typeusing Act i vat or . Cr eat el nst ance, amethod we saw earlier.
However, the URL information for the type hasto be made availableto Cr eat el nst ance. Thisis done by way of
acontext atribute called Ur | At t r i but e. Hereisour client code:

209

/1 Project dientActivated MO ient

class M/App {
public static void Main() {

Channel Servi ces. Regi st er Channel (new Tcpd i ent Channel ());

Hel | oUser user = (Hell oUser) Activator. Createl nstance(
t ypeof (Hel | oUser),
nul |,
new obj ect[] {
new Ul Attribute("tcp://Ilocal host: 8085")

1)

String greeting = user.GetGeeting("Jay");
Consol e. WitelLine("Return value: {0}", greeting);

greeting = user.GetGeeting("Jay");
Consol e. WitelLine("Return value: {0}", greeting);

When the client tries to create an instance of a client-activated type, aremote object is created on the server and a
proxy is returned to the client. Contrast this to a server-activated object, where the remote object is not crested until a
method call is made on the proxy. The returned proxy represents a specific remote object. If two new remote objects
are cregted, two different proxy instances are returned to the client. The client can use the returned proxy asif it were
alocal object. The client can even store instance- specific data between two method cals.

It isimportant to note that the remote object may get destroyed even before the client releases the proxy object. This
seems contrary to the intuition that aslong as the client keeps a reference to the proxy object dive, the corresponding
remote object should stay dive. Thisis because of theway .NET remoting manages the remote object's lifetime. We
cover this later when we discuss lifetime |eases.

Creating Proxy Classes

In Chapter 4, we learned that the common language runtime requiires access to the metadata for the managed code.
This holds true even if aclient gpplication is accessing a remote object; the metadata for the remote object must be
available localy and should be accessible by the common language runtime. For example, MyCl 1 ent . exe does
not execute properly if it cannot access G eet i ng. dl | , the assembly that stores the type information for the
Hel | oUser class.

There are casesin which it is not acceptable to ingal the server assemblies on a client's machine. Perhaps the server
does not wish to expose the implementation details, or perhapsit is not practical to keep a copy of the server
assemblies on each client.

210

No matter what the reason is, thereis no real need for aclient to be able to access the implementation of remote
classes. All that the client redlly needsislocal access to the metedata of the referenced classes. Thisiswhere the
Soapsudstool (soapsuds. exe) comesinto play.

The Sogpsuds tool comes with the NET Framework SDK. Thistool can extract metadata information from an
assembly and can save the information in various output formats such as XML schema, C# classes, and .NET
assembly. Check the SDK documentation for more details. The following command line, for example, reads an
asembly G- eet i ng. dl | asinput and generates a C# sourcefile G eet i ng. cs:

soapsuds -ia: Geeting -gc

The source code used in creating G eet i ng. dl | can befound under Project Soapsuds. It essentidly definesa
classHel | oUser asfollows

/1l Project Soapsuds/ Geeting

public class Hell oUser : Marshal ByRef Ooj ect {
public HelloUser() {...}

public String GetGeeting(String user) {

Here isthe rlevant portion of the code generated by the Soapsuds toal:

public class Hel | oUser
System Runti me. Renot i ng. Servi ces. Renoti ngd i ent Pr oxy

{
public Object RenotingReference {
get{return(_tp);}
}
public String GetGeeting(String user) {
return ((Hel l oUser) _tp).GetG eeting(user);
}
}

The generated proxy class maintains dl the public methods (with meatching signatures) found in the origina class. A
client can use this proxy class to satisfy the metadata requirement of the runtime.

Note that the proxy classinheritsfrom aclass Renot i ngCl i ent Pr oxy. This dlass provides some frequently used
properties when dedling with Soapsuds- generated proxies. For example, you can specify user authentication

211

information such as the user name, password, and so on. If the client is behind afirewal, you can dso specify the
proxy server to use.

If inheriting from Renot | ngCl i ent Pr oxy isnot desired, you can specify the - nowp commeand-line switch to
Soapsuds. exe. Inthis case, the generated proxy classinheritsfrom MVar shal By Ref Obj ect .

Instead of generating the source code as the output, it is aso possible to specify the Sogpsuds tool to generate an
assembly containing the proxy class. Thisisillustrated in the following commeand line:

soapsuds -ia:Geeting -oa:dientGeeting.dll

Either way, the output of the Soapsuds tool can be consumed by the client code to generate the client-side executable,
asillustrated here:

csc -t:exe -r:dientGeeting.dll MCient.cs

Thereisno need to reference the origind assembly anymore when building the client code. As aresult, the origind
assembly need not be ingtaled on the client machine.

Using URLs

The Sogpsuds tool can dso take its input from an HTTP URL. This feature is useful when the server assembly is not
avallableto the client.

Project Soapsuds hossthe server dassusing an HTTP channd. Here is the relevant code excerpt for the host:

/'l Project Soapsuds/ MyHost

class M/App {
public static void Main() {
Channel Servi ces. Regi st er Channel (
new Htt pSer ver Channel (8085));
Renot i ngConfi gurati on. Regi st er Vil | KnownSer vi ceType(
Type. Cet Type("Hel | oUser, Geeting"),
"Greeting/ GetHello.soap”,
Wl | KnownChj ect Mbde. Singl eCal I');

Note that the URI hasthe extension . soap. Although not necessary, the convention isto have an extenson of
either . soap or. r em Thegloba configuraion file Machi ne. conf i g defines HTTP remoting handlersto
handle arequest that ends with either of these two extensions. Thisis the default behavior. Y ou can aso add your own
extensions, if desired. Look a <ht t pHandl er s> tag for configuration details.

212

Given this URI and HT TP port number, a client can access the WK O using the URL
http://1 ocal host: 8085/ G eeti ng/ Get Hel | 0. soap.

If aremote gpplication is set up to use the HTTP channdl, then the Sogpsuds tool can be run against an HTTP URL as
illustrated in the following command line:

soapsuds -url:http://1ocal host: 8085/ G eeting/ Get Hel | 0. soap?wsdl
-oa: MG eeting. dl |

This command reads the input from the specified URL and generates an assembly containing the proxy class.

Note that the URL has to be suffixed with ?ws d| . The remoting layer is set up to handle this suffix and generate the
necessary WSDL information that Soapsuds can consume.

Remoting Configuration

Although servers can register an object by hard-coding the publishing information in the source, as we did in our
earlier examples, it is dso possible to put the type information in externd XML-based files. This providesthe
flexibility of configuring registration parameters without the need to recompile the source code.

The syntax for the configuration file can be found in the SDK documentation under the topic "Remoting Settings
Schema."

Host Settings

Using the configuration file, one or more types to be hosted and one or more channels to be used can be specified. The
following server-sde configuration settings publish three types in three different remote object modes (Project
Renot i ngConfi g/ MyHost):

<confi guration>
<system runti ne. renoti ng>
<appl i cati on nane="MRenoti ngHost " >
<servi ce>

<wel | known type="Foo, G eeting" node="Si ngleCall"
obj ect Uri =" CGet Foo" />

<wel | known type="Bar, G eeting" node="Si ngl et on’
objectUi="CetBar" />

<activated type="Baz, Geeting" />

</ service>
<channel s>
<channel port="8085" ref="http" />
</ channel s>
</ appl i cation>
</ systemruntine.renoting>
</ configuration>

213

This configuration implies

Class Foo isexposed asasngle-cal object on the HTTP channd at port number 8085.
ClassBar isexposed as asingleton object on the HTTP channel at port number 8085.
Class Baz isexposed as a client-activated object on the HTTP channel a port number 8085.

The configuration setting file can be loaded using a static method Renot | ngConf i gur at i on. Confi gur e.

The name of the configuration file must be passed as a parameter to this method, as shown in the following code
excerpt:

/1 Project RenotingConfig/ M/Host

class M/App {
public static void Main() {

Renot i ngConfi gurati on. Confi gure("MHost.cfg");

/'l Keep the server alive
Consol e. WitelLine("Press any key to quit server");
Consol e. Read() ;

It iseasy to guessthat the Conf i gur e method interndly calsChannel - Ser vi ces. Regi st er Channel to

register the channelsand Regi st er VI | - KnownSer vi ceType or Regi st er Act i vat edSer vi ceType

to register the types to be remoted. However, placing the connection information in an externa file makes it easy to
adminigter the parameters, and thisis the preferred way.

Client Settings

Remoting configuration settings are not just limited to the server side. Similar settings can be specified on the client
sde aswdl, dthough the syntax is dightly different. The following configuration settings make our just published
server-side objects available to the client:

<confi guration>
<system runti ne. renoti ng>
<appl i cati on nane="Thi slsM/Cient">
<client>
<wel | known t ype="Foo, G eeti ng"
url ="http://1ocal host: 8085/ Get Foo" />
<wel I known type="Bar, G eeting"
url ="http://1ocal host: 8085/ Get Bar" />
</client>
<client url="http://1ocal host: 8085/ ">
<activated type="Baz, Geeting" />
</client>

214

</ appl i cation>
</ systemruntine.renoting>
</ configuration>

The configuration file needs to be loaded in the client's AppDomain using the
Renot i ngConfi gurati on. Confi gur e method. Once the configuration is loaded, the client can ingtantiate

the remote objects using the new operator asillugtrated in the following code:

/1 Project RenotingConfig/ MydientNew

cl ass MyApp {
public static void Main() {

Renot i ngConfi gurati on. Confi gure(" M/ ient New. cfg");

/'l FOO

Foo foo = new Foo();

String greeting = foo. Get Geeting("Foo");

Consol e. Wi teLine("Return value: {0}", greeting);

/'l BAR

Bar bar = new Bar ();

greeting = bar. GetGeeting("Bar");

Consol e. Wi teLine("Return value: {0}", greeting);

/'l BAZ

Baz baz = new Baz();

greeting = baz. Get G eeting("Baz");

Consol e. Wi teLine("Return value: {0}", greeting);

Note thet dientscandsouse Act | vat or . Cr eat el nst ance or Act i vat or . Get Cbj ect to overridethe
configuration file settings for specified types.

Interndly, Renot i ngConf i gur ati on. Confi gur e cdlsthe method

Regi st er &l | Knownd i ent Type to associate a type with the URL of the remote server-activated object and
method Regi st er Act i vat edd i ent Type, to associate a type with the URL of the remote client-activated
type. You can use these methods directly if you do not wish to use a client-sde configuration file. Thisisillustrated in

the following code:

/1 Project RenotingConfig/ MydientUsi ngNew

public static void Main() {

/1 Configuring object information progranmatically

215

/1 Foo - Single-call object

Renot i ngConfi gurati on. Regi st er el | Knownd i ent Type(
t ypeof (Foo),
“http://1ocal host: 8085/ Get Foo");

/1 Bar - Singleton object

Renot i ngConfi gurati on. Regi st er el | Knownd i ent Type(
t ypeof (Bar),
“http://1ocal host: 8085/ GetBar");

/1 Baz - Cient-activated object

Renot i ngConfi gurati on. Regi sterActivat edd i ent Type(
t ypeof (Baz),
“http://1ocal host:8085/");

/1 Now instantiating classes using "new' operator
Foo foo = new Foo(); // Foo

Asmay be obvious, if atypeis not associated with aremote URL, the new operator ends up creating aloca object.

Notethat Regi st er V&l | Knownd i ent Type and Regi st er Acti vat edd i ent Type regider
wael-known types only for the AppDormnrai n they are invoked from. Each AppDomain that wishesto usethe new
operator for remote objects should call these methods (or load the configuration file).

Hosting under ASP.NET

Earlier, | mentioned that a reason to separate the main businesslogic (G- eet i ng. dl | inour case) from the hosting
logic (MyHost . exe) isthat it is possible to publish classes under ASP.NET, thus diminating the need for ahosting
executable. Let's see how this can be done.

Under ASP.NET, classes are published using a configuration file. Thefileisnamed web. conf i g and the

configuration format is Smilar to one we saw earlier for the server-side settings. There are just afew differences:

1. Under ASP.NET, classes are dways published using the HT TP channel. Therefore, channdl information
should not bepresentin web. confi g.

2. ASP.NET recognizes only two extensions for the URI, . r emor . soap. These two extensons are defined
inthe global configuration file (Machi ne. conf i g). If need be, you can add your own extension by
editing thisfile.

3. The<appli cati on> dement should not have any namne attribute. When ASP.NET gets loaded for a
specific Web gpplication, it automatically sets the name of the application to the dias name of the [1S virtual
directory in which it is being hosted.

216

Here is the modified version of our server-side configuration file that can be used under ASP.NET (Project
WebAppl i cati on):

<confi guration>
<system runti ne. renoti ng>
<application>
<servi ce>
<wel | known type="M/Conpany. Foo, G eeting"
nmode="Si ngl eCal | " obj ect Uri =" Get Foo. rent />
<wel I known type="M/Conpany. Bar, G eeting"
node="Si ngl et on" objectUi="CetBar.rent />
<activated type="MConpany. Baz, G eeting" />
</ service>
</ appl i cation>
</ systemruntine.renoting>
</ configuration>

To avoid any naming conflicts, | have defined the remote types under the namespace My Conpany . Using the
company hame as a namespace is agood coding guideine.

To host ASP.NET, you need to have I1S Web server running on your machine.

Here are the steps needed to host our assembly under ASP.NET:

1. Createanew virtud directory under I1S. Give a suitable name for the alias and point the virtua directory
(also called the virtual root or vroot) to the directory whereweb. conf i g resides. Thisis an important step.
ASP.NET expectsweb. conf i g to be present in the vroot (dthough it is possible to customize the
behavior for asubdirectory under vroot by defining another web. conf i g in the subdirectory). For our
experiment, let the diasnamebe G- eet i ng and the directory be
C: \ Dot Net Pr ogr anmmi ng\ Ch06- Di stri but edConput i ng\ WebAppl i cati on.

2. Create asubdirectory called bi n under thisdirectory and copy the required assemblies to this directory. In
our case, G eet i ng. dl | hasdready been builtin
C: \ Dot Net Pr ogr anmi ng\ Ch06- Di st ri but edConput i ng\ WebAppl i cation\bin
directory. Thedefault Pr i vat ePat h configuration setting for ASP.NET isdefined asbi n. If you wish,
you can cugtomize this setting for your needs.

We are ready to go. A client can now access the published types at the URL
http://<machi nenanme>/ <al i as>/ <obj ect Uri >. In our experiment, for example, this trandatesto
http://1 ocal host/ G eeting/ Get Foo. r emfor accessing class My Conpany . Foo, asshowninthe

following code excerpt:

/1l Project WebApplication/ Myd i ent

cl ass MyApp {
public static void Main() {

217

Channel Servi ces. Regi st er Channel (new Htt pChannel ());

String url ="http://local host/ G eeting/";
/'l FOO

Foo foo = (Foo) Activator. Get Qbj ect (

t ypeof (Foo),

url + "GetFoo.renl);

String greeting = foo. Get G eeting("Foo");

Consol e. WitelLine("Return value: {0}", greeting);

Recdll that our implementation of Foo. Get Gr eet i ng returns the gregting dong with the name of the assembly
and the hash code of the instance of FO0. Hereisthe partid output when the client program is executed:

Return value: Hello Foo from
/ LM WBSVC 1/ Root / Greet i ng- 1- 126572344064463520: 181

Notice the strange assembly name returned for G eet i ng. dl | . Thisis because ASP.NET uses amechanism caled
shadow copy. Using this mechanism, ASP.NET makes a"shadow" copy of an assembly to be used, which isthen
locked and loaded. Asthe original assembly is not locked, it gives a chance for the developers or administrators to
replace the assembly with a newer version even while the Web server is running. Furthermore, any changesto the
original assembly can automatically be detected by ASP.NET, and, if needed, the assembly is shadow-copied once
again. The newer incoming requests are automatically redirected to the newer copy of the assembly.

A find word on hogting .NET remoting applications either under ASP.NET or usng an HTTP channdl directly:
Although the communication is based on HTTP and SOAP, the way the SOAP messages are formatted, not many

nort .NET platforms are capable of interpreting the message. There have been some success stories with PocketSOAP
(www . pocketsoap.com/webl og/soapl nterop/base.html) and Apache

(www.apache.org/~rubys/A pacheClientinterop.html). Later in the chapter, we look at Web services, a different
mechanism for exposing types for remoting. The SOAP format used by Web services can be consumed by awide

range of platforms.

Lifetime Leases

For aCAOQ, it seemsintuitive that as long as the client keeps areference to the proxy the remote object stays dive and
that when the client releases the last reference to the proxy, the remote object gets garbage collected. However, don't
count on this.

In adigributed system, if areference counting mechanism is used on an object, there needs to be amechaniamin
place to adjust the object's reference count in case a client is not reachable anymore. Perhaps the client has terminated
unexpectedly. Traditiondly, this check is achieved by requiring the server to ping the clients periodicaly. Those who
have worked with DCOM are familiar with this concept. Although this technique of periodicdly pinging the clierts

218

workswell for asmall number of clients per service, it doesn't scale well when there are a huge number of dlients per

service.

.NET uses aleased-based technique to manage the lifetime of MBR objects. An MBR object, either client-activated or
singleton, can be associated with alifetime lease. When the lease expires, the object is destroyed (garbage collected).
Thisisthe default behavior. Aswe will see shortly, there are various ways to extend the lease.

A leeseimplementsthe | Lease interface (dl lifetime-related interfaces and classes are defined in the namespace
System Runti me. Renot i ng . Li f eti ne). Hereisits definition:

interface | Lease {
LeaseState CurrentState {get; } // Initial, Active, etc.
Ti meSpan Initial LeaseTi me {get; set;}
Ti meSpan RenewOnCal | Ti me {get; set; }
Ti meSpan CurrentLeaseTine {get; } // remaining | ease tine

/'l Renew a | ease
Ti meSpan Renew(Ti neSpan renewal Ti ne) ;

/'l Sponsorship rel ated

voi d Regi ster (I Sponsor)

voi d Regi ster (Il Sponsor, Ti meSpan)

voi d Unregi ster (Il Sponsor)

Ti meSpan Sponsor shi pTi neout (get; set;}

Property | Lease. | niti al LeaseTi e definesthetime the object will be kept dive onceit is remoted,
irrespective of whether a client makes amethod cdl or not. If acdl comesin during thistime, the remaining leese
time(l Lease. Current LeaseTi ne) isautomaticaly adjusted to the greater of

| Lease. Current LeaseTi ne and| Lease. RenewOnCal | Ti ne. The default vaue for theinitid leese
time is five minutes and for the renew-on-cal time is two minutes. This means that once a client obtains aremote
object, if the client doesn't make a cdl within five minutes, the remote object is destroyed, leaving the dlient with a
dangling proxy (and we dl know how much that hurts). If the unsuspecting client makes a cal on such a proxy, the
runtime throws an exception of type Renot i ngExcept i on.

Let's say the client makes a cdl on the remote object after four minutes. The runtime adjusts the remaining lease time
(which should be one minute at this point) to two minutes (the default valuefor | Lease. RenewOnCal | Ti nre).
The client must now continue to make calls on the object at least once every two minutes, failing which the remote
object is garbage collected.

The defallt lease parameters for an MBR object can be adjusted before the object |eaves the context. A type can
contral its own lifetime policy by overriding the Var shal ByRef Cbj ect . I nitial i zeLifeti meService

method, as shown in the following code excerpt:

/'l Project LifetinmelLeases/ Geeting

219

public class HelloUser : Marshal ByRef (hj ect {
public override Cbject InitializeLifetineService() {
| Lease | ease =
(I Lease) base.lnitializeLifetineService();
if (lease.CurrentState == LeaseState.Initial) {
| ease. I nitial LeaseTi me = Ti neSpan. Fr onSeconds(30);
| ease. RenewOnCal | Ti ne = Ti meSpan. Fr onSeconds(10) ;

}

return | ease;

Theruntimecdls| ni ti al i zeLi f et i neSer vi ce when the object isbeing remoted. A typicd override
implementation obtains the lease by cdling thebaseclassi ni ti al i zeLi f et i neSer vi ce, modifiesthe lease
parameters, and returnsit to theruntime. A nul | vaue can be returned, indicating that no lease can be crested for the
associated object, giving the object an infinite timeout.

Note that theruntimemay cal | ni ti al i zeLi f et i neSer vi ce multiple times but the |ease parameters can be
adjusted only when the leeseisinitsinitid date (LeaseSt ate. I niti al).

Each AppDomain contains alease manager that is responsible for adminigtering leesesin its domain. The lease
manager periodically checks al leases for expired leases. If the lease expires, the corresponding object is garbage
collected. Note that alease comesinto play only when the object is remoted out of its AppDomain, not just out of its
context.

There are two ways for the clients to extend the lease. The firg way isto cdl | Lease. Renewwhenever
appropriate and specify anew expiration time period. Thisisillustrated in the following code excerpt:

/1 Project LifetineLeases/ My/dient
public static void Min() {

Hel | oUser user =
(Hel I oUser) Activator. Createlnstance(...);

| Lease | ease = (| Lease) user. GetLifetinmeService();
| ease. Renew(Ti neSpan. FronmM nut es(3));

The lease for an object can be obtained by caling Mar shal ByRef Obj ect . Get Li f eti neSer vi ce.The
preceding code obtains the lease and sets the new expiration time to three minutes.

220

The second technique for extending the lease is based on a sponsorship mechanism. A client can register an object,
referred to as the sponsor object, with the lease manager. When the lease for an object expires, the lease manger first
walks through al the sponsors for the object to seeif any sponsor wishes to renew the lease. If no sponsor renews,
only then isthe object destroyed.

A sponsor object implements an interface, | Sponsor . Theinterface definition is shown here:

i nterface | Sponsor {
Ti mreSpan Renewal (| Lease | ease)

When the lease expires for an object, the lease manager cals Renewal on each of the sponsors of the object. Each
Sponsor can return the new expiration time period, and the lease manager uses the maximum of the returned values as
the new lease period.

A sponsor might not respond immediately, perhaps because of network problems such as latency, delays, and so on.

To account for this, the lease manager waitsfor thel Lease. Sponsor shi pTi neout time period for aresponse.

If the response doesn't come within this period, the sponsor is removed from the list and the lease manager moveson
to the next sponsor. The default value for Sponsor shi pTi meout istwo minutes, but it can be set to a different

vaue when initidizing lifetime services
A type can refuse to accept any sponsor by setting Sponsor shi pTi meout toavaueTi meSpan. Zer o.
A client can register asponsor by cdling | Lease. Regi st er, asshown in the following code excerpt:

/1 Project LifetineLeases/ Myd ient

public class MySponsor : WMarshal ByRef Chj ect, | Sponsor {
public override Cbject InitializeLifetineService() {
return null;

public Ti neSpan Renewal (| Lease | ease) {
Consol e. WitelLine("Renewal at {0}", DateTi ne. Now);
return Ti meSpan. Froneconds(20);

}

class M/App {
public static void Main() {
Channel Servi ces. Regi st er Channel (new TcpChannel (8086)) ;

Hel | oUser user =
(Hel I oUser) Activator. Createlnstance(...);

| Lease | ease = (Il Lease) user. CetLifetineService();

221

| ease. Regi st er (new MySponsor ());

Once a sponsor object is registered, adlient can unregister it anytime by cdling | Lease. Unr egi st er.

Note that the sponsor object has to be marked as remotable (either seridizable or MBR). In addition, if the sponsor
object is of the MBR type, then it dso has to take care of its own lifetime.

In the preceding code, the clientisusingaTcpChannel ingead of TcpCl i ent Channel . Recal that
TcpChannel implements dient-side aswell as server-side logic for the TCP channd. Asthe dlient-loca object

My Sponsor isimplemented asan MBR object and is being sent to aremote AppDomain, in away, the dient is now
acting as aserver. This explains the need for a server-sde channdl.

Technicdly, if TcpChannel isinitidized using the default congtructor, the implementation of TcpChannel sets
up only the client channel and does not listen on any ports. Using a constructor thet takes the port number asa
parameter indicates that the server channd aso has to be set up. Obvioudy, the port number to be used should not
conflict with any other gpplication.

Automatic Port Number Selection

~ e If you are not sure of the port number to use, passin the vaue 0 to the constructor of
TcpChannel or Ht t pChannel . The remoting system automatically chooses an available

- ~
port for you.

Note that this mechanism is meaningful for aclient that may act as a server. When adlient
passes alocal MBR object to aremote AppDomain, the object carries with it dl the necessary
information, including the port number, to connect back to the client. Therefore, the remote
AppDomain need not explicitly know the port number of the client. Contrast thisto a client
trying to obtain an object by cadling Act i vat or . Get Chj ect or

Acti vat or. Cr eat el nst ance. Inthiscasg, the client and the server have to agree on
the port number to use.

ASP.NET Web Services

The Internet is evolving from a collection of isolated Web sites and gpplications into a generd communication bus for
distributed applications. Recall from Chapter 1 that Microsoft and many other companies believe that the components
of the distributed applications will communicate with each other using Web services. A Web service (more
specificaly, XML Web service) isa service that can be programmatically accessed over the Web. It is based on
industry standards such as SOAP and WSDL.

ASP.NET makesit easy to create and test Web services.

222

Providing Web Services
Let's define asmple Web service class that defines amethod to add two numbers. Here is the code:

<%@ WebSer vi ce Language="C#" ass="M/Conpany. WyCal cul ator" %
/1 Cal cul ator.asnx ?Project Calculator

usi ng System Web. Servi ces;

nanespace MyConpany {

[WVebSer vi ce(Nanespace="http:/ /| ocal host/WRenoti ng/")]
public class MyCal cul ator : WebService {

[WebMet hod]
public int Add(int a, int b) {
return (atb);

Under ASP.NET, aWeb service source file is saved with the extension . asnx. Thefirgt line of the sourcefile
contains adirective for ASP.NET. The Language aitribute specifies the programming language being used for the

codeand the Cl ass aitribute specifies the name of the class that should be published as a Web service.
The rest of the source defines the code for the My Conpany. MyCal cul at or Web service.

It isaso possible, and recommended, to keep the code in a separatefile. In this case the code must be compiled and
the generated assembly must be placed in a subdirectory named Bi n. The name of the generated assembly does not
matter. ASP.NET scans dl the assembliesin the Bi n directory looking for the class specified inthe Cl asss attribute.

If you use the Visud Studio .NET Wizard to generate the Web service, the wizard creates afile, Ser vi ce. asnx,
to storethe Vb Ser vi ce directive and another file Ser vi ce. asnx. cs (or. vb for Visud Basic) to store the
code, where Ser vi ce isthe name of your service. Using Visua Studio .NET to generate aWeb sarviceisagood
idea. The wizard also creates a virtud directory under 1S and configures it to alow program execution. However, if
you dready have an exigting 1S virtud directory that you wish to use, you can sdlect the project template called New
Project in Existing Folder to create your Web service project.

CodeBehind Attribute

_..._1' A Visua Studio.NET Web service project automatically adds an attribute CodeBehi nd to

-

=— Jf the\\ebSer vi ce directive. This attributeis not used by ASP.NET. Visua Studio .NET uses
itto associate an . asnx filewith asourcefile(. ¢s or . vDb).

223

A Web sarvice dlassis typicaly inherited from a standard class \\eb Ser vi ce (namespace

Syst em Web. Ser vi ces). This makesit possible to directly access certain ASP.NET intrinsic objects such as
those for application and session state. By default, Web service classes created using Visua Studio .NET inherit from
theV\ebSer vi ce class.

It is not a requirement for your Web service dassto inherit from Vb Ser vi ce. Your class can dill accessthe
ASP.NET intrinsic objects from a gtatic property, Syst em Web. Ht t pCont ext . Current .

Whether or not your Web service inherits from W\eb Ser vi ce, there are afew requirements your class must mest.

First, the class must be marked as public and must have a public default congtructor. This makes it possible for
ASP.NET to create an instance of your Web service class.

Second, and more important, your class must support MBV semantics, not MBR. ASP.NET Web services are about
loosdly coupled systems. MBR objects provide for distributed identity and are not supported under ASP.NET. For the
same reason, MBR objects should not be returned from ASP.NET Web services.

Findly, each method that should be exposed as part of the service must be attributed with the

[WVebMet hodAt t ri but e] token, as shown in the earlier code. The V\eb Vet hodAt t r i but e attribute contains
severd properties for configuring the behavior of the method. For example, you can add a brief description of your

Web service method, or you can enable or disable the ASP.NET session state for the method. Check the SDK
documentation for acomplete list of supported properties.

The smple datatypes that a Web method can support can be found in the section Built-1n Datatypes of the XML
Schema Part 2: Datatypes specifications (www.w3.0org/TR/xmlschema-2/). Examplesincludei nt, f | oat, stri ng,

and so on. Web methods also support compound types such as structures and array for method parameters as well as
the return vaue. Check the World Wide Web Consortium (W3C) site for more details
(Www.w3.org/ TR/ISOAP/# Toc478383532).

A Web service class can optionaly be marked with the V\lebSer vi ceAt t r i but e attribute. Thislets you add extra
information to your Web service, such as the description of the service and the namespace the Web service belongs to.
A Web service's namespace is not the same as assembly namespaces that you have been used to seeing, athough the
concept is the same to resolve naming conflicts. A Web service namespace is identified by a URI. If not specified, the

default namespace is hitp://tempuri.orgy/.

Let'stest thislittle program of ours. Firgt, creste avirtua directory under 11S. In my case, the diasfor the virtua
directory is\VWAGRenot i ng and the root directory for thisdiasis

D: \ Dot Net Pr ogr amm ng\ Ch06- Di st ri but edConput i ng\ Cal cul at or . Thisiswherethefile
Cal cul at or . asnx isstored.

No explicit compilation is needed to run the Web service. Behind the scenes, when a call is made on the Web service,
ASP.NET automaticaly compiles the code and generates a .NET assembly. Subsequently, ASP.NET continues to
monitor the source files and recompiles the code if it detects a changein thefiles.

224

ASP.NET Web Services versus .NET Remoting

SERE In the previous section, we saw that the NET remoting framework is capable of providing

—_— sarvices over an HT TP channd, which by default uses the SOAP formatter. The server
gpplication can aso produce WSDL-compliant XML schema. This makes you wonder why
there is any need for a different technology to create Web services.

Although it istrue that both ASP.NET and .NET remoting can seridize objectsin SOAP
format, the two seridization mechanisms have entirely different gods. The god of the SOAP
formatter under .NET remoting isto seridize any .NET object with true fiddlity. You can
change the formatter from binary to SOAP and the chances are your managed code will not
break. The god of the ASP.NET seridizer isto provide interoperability across various
development platforms. It does not necessarily support everything in the common language
runtime.

Another subtle differenceisthat ASPNET uses XMLSer i al i zer (Chapter 5) for seridizing
objects. This class seridizes only the public fields of aclass. Contrast this to the SOAP
formatter used by .NET remoting it seridizes the public as well asthe private fidlds (to
maintain true fiddity).

If you know that the server and dl its clients are running the common language runtime on

their systems, then there is nothing wrong with using .NET remoting. Perhgps this should be
your choice. Not only do you get full fiddlity for the NET objects but you can aso get
performance improvement by using the binary formatter. Plus, you get a choice of TCP, HTTP,
or any other proprietary channd.

It may be awhile before the common language runtime will be available on dl systems. In fact,
it may never be available on some platforms. Therefore, if interoperability isyour concern,
then you should use the ASP.NET Web services architecture.

ASP.NET aso takes care of generating the WSDL definition for the class. From Microsoft Internet Explorer, for
example, if youtypeht t p: / /1 ocal host / WsRenot i ng/ Cal cul at or. asnx?wsdl (note ?wsdl atthe

end), then you will see the WSDL definition being displayed.

Thereismuch more. Entering ht t p: / / | ocal host / WBRenot i ng/ Cal cul at or. asmx?di scoin
Internet Explorer, causes ASP.NET to automatically produce the discovery document. A discovery document provides
clients with information on available Web services and their descriptions. Discovery documents are typicaly stored

in. di sco files.

Findly, ASP.NET dso makesit easy to test a Web service. For example, from Internet Explorer, if you type
http://1 ocal host/WRenot i ng/ Cal cul at or . asnx, the resulting Web page shows the methods that

225

are available in the Web service. When you click on amethod, ASP.NET automatically generates a page that you can
use for testing the method. A snapshot of the test page is shown in Figure 6.8.

Figure 6.8. A snapshot of an ASP.NET generated test page.

‘2 MyCalculator Web Service - Microsoft Internet Explorer

&

Fie Edit Wiew Favorites Tools Help i

Address -’é:l hitkp: f fliocalbostwiRemoting /Caloulator asre fop=4Add b

MyCalculator

Clhck here for a complete list of operations,

Add

Test
To test the operation using the HTTP GET protocal, click the 'Invake’ button,

Parameter ‘Value

a:

bi:
Invaoke
v
4 ¥
Ifﬂ Done “J Local intranst

Consuming Web Services

The NET SDK shipswith atool called the Web Services Description Language toal (Wsdl . exe) that can be used to
generate aproxy classfor aWeb service. The proxy class defines dl the methods that are exposed as part of the Web
service. A client can simply invoke these methods, which in turn communicate with the Web service over the network.
The proxy takes care of generating the gppropriate SOAP messages and converting the resulting SOAP responses to

the common language runtime types.

The following command line generates the proxy classfor My Cal cul at or Web sarvice. The codeis saved in file
Pr oxy. cs:

wsdl . exe -o0: Proxy.cs \
http://1 ocal host/WsRenot i ng/ Cal cul at or. asmx?wsdl

By default, the code is generated in C# but a different programming language can be specified by means of a
command-line switch.

Hereisthe code excerpt for the generated proxy class:

public class M/Cal cul at or

226

Syst em Web. Servi ces. Prot ocol s. SoapHtt pd i ent Prot ocol {
public MyCal cul ator() {
this. Ul =
“http://1ocal host/ WsRenot i ng/ Cal cul at or. asnx";

public int Add(int a, int b) {

Note thet the proxy classinheritsfrom aclass SoapHt t pCl i ent Pr ot ocol . Thisclass provides some frequently
used properties when deding with V.6 d| . ex e-generated proxies. For example, you can specify security credentials
for Web service client authentication (we will seethisin Chapter 9). If the client is behind afirewdl, you can dso
pecify the proxy server to use, asillugtrated in the following dlient-side code:

MyCal cul ator calc = new MyCal cul ator();
cal c. Proxy =
new Syst em Net . WebPr oxy(" http:// myproxyserver: 8080");

Note the code in the constructor of the generated My Cal cul at or dass. By default, the proxy class pointsto the
URL of the Web service that was used to generate the proxy class. However, it is possible to point to a different URL
at runtime by setting the URL property of the SoapHt t pCl i ent Pr ot ocol classasshown here;

calc. Ul = "http://Machine/ Alias/File.asnx";
Hereisour actud client code:

/1 Project Calculator/MWdient

/1l File Wdient.cs
class Wdient {
public static void Min() {
MyCal cul ator calc = new MyCal cul ator ();
int retvVal = cal c. Add(10, 20);
Consol e. WitelLine(retVal);

Compile the client code as follows:.
csc -out: MO ient.exe WA ient.cs Proxy.cs

When MyCl i ent . exe isexecuted, it calsthe Add method on the Web service and displays the return value.

227

Watching SOAP Traffic

e Asyou gtart playing with Web services, a some point you will want to look at the SOAP

5 : packets being exchanged between your client and aWeb service. Here are two excellent tools.

PCapTr ace isafree packet capture tool that can be downloaded from
www.pocketsoap.com/pcaptrace/. Simply run thistool and specify the server and port your

code is connecting to. The tool captures and displays dl the data. Y ou can aso log the data.

Pr oxyTr ace isyet another free tool that acts asan HTTP proxy server. It can be
downloaded from www.pocketsoap.com/tcptrace/pt.asp. The only drawback with thistool is
that you need to modify your client code to go through a proxy server.

At this point, it isworth mentioning that Visua Studio .NET makesit easy to generate aWeb sarvice diert. Inthe
Solution Explorer, right-click your project and select Add Web Reference. Enter the URL for the Web servicein the
ensuing diaog box. The wizard discovers and displays the Web service(s). Clicking the Web service generates a

proxy class for the Web service and adds it to your project. By default, the namespace of the generated proxy classis
the host name of the URL. For example, sdlecting our Cal cul at or Web servicefrom | ocal host generatesa
proxy class| ocal host . MyCal cul at or . However, you can changethel ocal host namespace to something
more meaningful by sdectingthel ocal host folder in the Solution Explorer and renaming it.

Managing State in ASP.NET Web Services

Inheriting aWeb sarvice dass from V\eb Ser vi ce makesit easy to access the state menagement options of
ASP.NET. The\VbSer vi ce dass contains many of the common ASP.NET objects, including the
Appl i cati onand Sessi on objects.

TheAppl i cat i on object provides a mechanism for storing datathat is accessible to dl code running within the
Web gpplication. The following code excerpt demongtrates a smple example of how the Appl i cat i on object can

be used to track the usage of the Web application.

/1l Project Calculator. File Cal cul ator.asnx

[WVebMet hod(Descri pti on=
"Nunmber of tines this application has been used")]
public int ApplicationUsage() {
String USAGE = "Usage";
if (Application[USAGE] == null) {
[l First tine
Appl i cation[USAGE] = O;
}

/'l I ncrement the usage count.

228

Application[USAGE] = ((int) Application[USAGE]) + 1;
return (int) Application[USAGH ;

TheAppl i cat i on object stores each hit of state information as a name value pair. In the preceding code, a counter
isbeing stored under the name USAGE. Each time the method is called, the counter isincremented by one.

Whereasthe Appl i cat i on object isused to store data at the gpplication leve, irrespective of the number of clients
connected to the application, the Sessi on object alows data to be stored on a per-client sesson basis. The

following code excerpt shows how to create a hit counter for per-user session:

/1 Project Calculator. File Calcul ator.asnx

[WebMet hod(Enabl eSessi on=t r ue) |
public int PerUserSessionUsage() ({
String USAGE = "Usage";
if (Session[USAGE] == null) {
[l First time
Sessi on[USAGE] = 0;

/1 Increment the usage count.
Sessi on[USAGE] = ((int) Session[USAGE]) + 1;
return (int) Session[USAGH ;

As can be seen, using the Sessi on object issimilar to using the Appl i cat i on object. Theimportant thing to
note isthat to use the Sessi on object, the session state must be enabled on the Web service method. Thisis done by
setting the Enabl eSessi on property of the \ebMet hod attribute to true.

ASP.NET keeps track of the session by means of aclient-side cookie. The client code should be enabled to store the
cookie. Thisisdone by setting the Cooki eCont ai ner property toanew Syst em Net . Cooki eCont ai ner
object, as highlighted in the following code:

/1 Project Calculator/MWdient

cal c. Cooki eCont ai ner = new System Net . Cooki eCont ai ner () ;
int count = cal c. Per User Sessi onUsage();

count = cal c. Per User Sessi onUsage() ;

count = cal c. Per User Sessi onUsage() ;

Customizing the Web Service Interface

Sometimes it may be necessary to control the auto-generated WSDL document and the contents of the SOAP
messages. In this section, we explore some important possibilities.

229

Protocols

By default, ASP.NET supports three different HT TP protocols for communication: HTTP-GET, HTTP-POST, and
HTTP-SOAP. A client application can use any of these three protocols to communicate. When you're ready to go to
production, however, you'l probably want to stick to just SOAP. Most Web service implementations today rely on
HTTP-SOAP because it offers amuch more robust and extensible protocol. For example, SOAP defines standards for
encoding data and communicating error information.

Toexcdude HTTP-GET and HTTP-POST from your Web service's WSDL, you need to add the
configuration\system web\webServi ces\ prot ocol XML pathinyour application's
web. confi g file. You need to add a<r enbve> dement for each protocol that you want to remove, as shown

here:

<confi guration>
<syst em web>
<webSer vi ces>
<pr ot ocol s>
<renove nane="Htt pPost" />
<renove nane="HttpGet" />
</ pr ot ocol s>
</ webServi ces>
</ syst em web>
</ configuration>

Configuring your Web service thisway has the following effects:

The removed protocols are excluded from the service's WSDL document.

The dlientsreceive an error if they attempt to use these protocols to invoke the Web service.

Disabling HTTP-GET disables the autogenerated test page. Although not abig deal during development,
removing the protocols you don't use is an important step before a Web service goes into production.

SOAP Message Formatting

WSDL defines two styles for how a Web service method can be formatted in a SOAP message: document and RPC.
Document formeatting is designed for XML document-based messaging. It doesn't have, for example, the notion of
method parameter ordering. RPC formatting states that al parameters are encapsulated within asingle XML eement
named after the XML Web service method and that each XML dement within that XML dement representsa
parameter named after the parameter it is representing. More information about RPC formeatting can be found in
Section 7 of the SOAP specifications (www.w3.0rg/TR/SOAP/# TocA78383532).

By default, ASP.NET Web sarvicesuse docunent formatting. However, it is possible to specify RPC formatting on
aWeb sarvice method. Thisis done using the attribute SoapRpcMet hodAt t r i but e (namespace
Syst em Web. Servi ces. Prot ocol s), asillugrated in the following code excerpt:

/1 Project Calculator/Calcul ator.asnmx

230

[SoapRpcMet hod]

[WebMet hod]

public int Miltiply(int a, int b, out int ¢) {
c=a*b
return c;

There are many properties that can be set on SoapRpcMet hodAt t r i but e. For example, the One\\y property
can be st to true, in which case the client cal does not have to wait for the Web server to finish processing the
message. Check the SDK documentation for One\V\ay aswell asdl other properties available on the attribute.

Tracing ASP.NET Web Services
A discusson on ASP.NET Web services will not be complete without talking about how to trace the Web services.

ASP.NET providesaclass Tr aceCont ext that makesit easy to add trace statements to your applications, and to
capture and view them while the application is executing. The class implements two methods, W i t e and War n, that

you can use for adding traces to your application.

TheTr aceCont ext objectisavailable asaproperty Tr ace on the current HTTP context. Thet is, the object can
be accessed asHt t pCont ext . Current . Tr ace anywherefrom the ASP.NET application or as
Cont ext . Trace incaseof V\ebSer vi ce methods, asillustrated in the following code excerpt:

/1 Project Calculator. File Calcul ator.asnx

[WebSer vi ce(Nanmespace="htt p:/ /| ocal host/ WsRenoti ng/")]
public class M/Cal cul ator : WebService {

/1 Sinple Wb Servi ce Deno

[WebMet hod]

public int Add(int a, int b) {
Context. Trace. Wite("Add cal |l ed");
return (a+b);

Just adding the trace statements to your code is not enough;, tracing has to be enabled in order to be able to view the
traces. Y ou can enable gpplication-leve tracing by adding a<t r ace> dement to your Web. confi g filg as

illustrated below:

<confi guration>
<system web>
<trace enabl ed="true" requestLimt="40" />
</ syst em web>

231

</ configuration>

When gpplication-level tracing is enabled, ASP.NET writes the output details to an gpplication-wide trace viewer
application caled Tr ace. axd. Tr ace. axd isan HTTP handler that you can use to watch a bunch of requests.

The number of requests to be saved can be configured with an optiona r equest Li mi t aitributein your
V.eb. confi g file The default vaue (and the minimum) is ten. Once the number of requests reaches
request Li m t, tracing is automaticaly disabled.

To view thetraces, issuethe URL ht t p: / / <Machi ne>/ <AppRoot >/ Tr ace. axd from Internet Explorer,
where <Machi ne> isthe machine on which your ASP.NET gpplication is running and <AppRoot > isthe name of
the [1Svirtua directory of your gpplication. And don't worry that the trace viewer (Tr ace. axd) doesnot physicaly
exig asafilein theroot directory of your application.

Thetrace viewer lets you view your executed trace statements. It aso lets you get detailed information on a specific
trace.

Note that the trace viewer does not update the view automaticaly. Y ou will need to hit the refresh button (F5) from
your browser to get an up-to-date view.

This concludes our discussion on developing and using ASP.NET Web services. In Chapter 8, we will look at how to
invoke Web services asynchronoudly. In Chapter 9, we will 1ook at how to secure your ASP.NET Web services. In
Chapter 10, we will see how Web services can participate in atransaction. If you wish to experiment with Web
services, | suggest that you use the Web Services Wizard thet comes with Visud Studio .NET. Besides generating the
Web services template, it aso crestes the necessary configuration (web. conf i g) and discovery (. di sco) files

For agood article on getting started with Web services using Visual Studio .NET, check out [MS-02].

Remoting Internals
In this section, we look a the internas of remoting. Y ou can skip this section and revisit it later if you wish to.

Recall from the earlier section that when an object is passed from the origina context or AppDomain to the client's
context or AppDomain, the runtime transparently creates a proxy object in the client's context and returns to the client
areference to the proxy. When the client makes method calls on the proxy, the runtime takes care of packaging the
data as a message and sending it over the transport channel to the server.

For the sake of our discussion in this section, an object refersto ether a context-bound object or a context-agile object
that will be remoted to a different AppDomain. Such an object always requires marshaing.

The overal gtructure of how the message flows from the dlient to the server is shown in Figure 6.9.

232

Figure 6.9. Remote method call flow.

Client Context Server Context

Client Object Ma rshal By RefObject

Stack Builder Sink

Tranzparent Prosy

II

!

Real Prosy Cibgect Sink Chain
: ; Serwr Coned Client Contest
Eiyesy Aink Churin Sink Chain Sink Choin
A
Channel Channel
| Message Sink Chain Message Sink Chain |

!

Chent Channel Server Channel
Sink Chan Sink Chain

Trans port Sink Transpart Sink
A

Metwork

HI{—F

}I-ﬂi—h

Don't get daunted by the complexity of Figure 6.9. By the time you are done with this section, you won't have any
problems drawing this figure out and impressing your officemates.

As messages form the basis of the flow, |et's examine them fird.

Messages

When amethod cal is made on the proxy, the runtime packages the necessary data such as name of the method,
method arguments, and so on, into amessage. On return, the runtime packages the return values into amessage. A
messege is Ssmply composed of properties, each of which is uniquely identified by aname.

A messageis represented by a standard interface, | Message. Thisinterface is further dassified as
| Met hodCal | Message (to represent the method call) and | Met hodRet ur nMessage (to represent the return

vaue).

233

Hereisthe definition of interface | Message:
interface | Message {

I Dictionary Properties {get; }

The property Pr oper t i es returnsadictionary that represents a collection of properties. Some basic message
properties are listed in Table 6.1.

Table 6.1. Basic Message Properties
Name Description
___Met hodNane Name of the remote method being called
__Met hodSi gnat ure Parameter types and return value type of the method
__TypeNane Complete type name of the remote object
__Args Actual arguments being passed to the method
__Cal | Cont ext The logical call context of the method
_Return Holds the return value of the method

Project Ut i | i ti es onthe companion Web site definesamethod My Renot eUt i | s. DunpMessage that you
may find useful. This method can be used to dump the contents of a message to the console.

Message Sinks

One of the gods of the .NET remoting architecture was to provide an extensible mechanism so that devel opers can
intercept various stages of the message pipeline and monitor or massage the message according to their needs. This
interception capability is provided in theform of an interface | MessageSi nk. You create your message sink class
that implements| MessageSi nk and insert it into the pipeline. More than one message sink can be inserted into the

pipdine asasingly linked chain.
Hereisthe definition of thel MessageSi nk interface:

i nterface | MessageSi nk {
public | MessageSi nk Next Si nk {get; }
public | Message SyncProcessMessage(| Message nsg) ;
public | MessageCirl AsyncProcessMessage(
| Message nsg, | MessageSi nk repl ySi nk);

TheNext Si nk method returns the handle to the next sink in the chain. A typica implementation of a message sink
stores this handle as amember field.

When a synchronous method call is made on the proxy, the runtime calls SyncPr ocessMessage onthefirg
message Snk in the chain. This gives the sink a chance to ingpect or modify the message. A typica implementation

234

would eventualy forward the message to the next sink in the chain. However, asink may choose to manufacture a
return value and short-circuit the method cal.

When an asynchronous method call is made on the proxy, the runtime cals AsyncPr ocessMessage on thefirg
message sink in the chain. Parameter r epl y Si nk is used to post the reply of the message. The return value,

| MessageCtr |, provides away to cancel the asynchronous call that isin progress. A typica implementation just
forwards the incoming message to the next sink in the chain.

Hereisavanillaimplementation of | MessageSi nk. The only extrafunctiondity this code providesisto display
the synchronous method call message and the return value to the console:

/1 File Uilities\M/Wils.cs

[Serializable]
public class M/MessageSink : | MessageSi nk {
private | MessageSi nk m next Si nk;

public MyMessageSi nk(| MessageSi nk next Si nk) {
m next Si nk = next Si nk;

public | MessageSi nk NextSink { get { return mnextSink; } }

public | Message SyncProcessMessage(| Message nsg) {
MyRenot eUti | s. DunpMessage(nsg) ;
| Message retnmsg = m next Si nk. SyncProcessMessage(nsg) ;
M/Renot eUt i | s. DunpMessage(r et nsg) ;
return retnsg;

public | MessageCtrl AsyncProcessMessage(
| Message nsg, | MessageSi nk replySi nk) {
return mnext Si nk. AsyncProcessMessage(nsg, replySink);

Notethe[Seri al i zabl e] attribute on the message sink. This ensures that the sink runsin the context it is
intended for, even if it initidly gets created in a different context.

Always Use [Serializable] on Message Sinks

¢ Without this atribute on the message sink, the sink methods may execute in the wrong context.

- -

- b

235

Aswe go through the rest of this section, we will discover the stagesin the pipeline where an
| MessageSi nk-based sink can be used.

Contexts
A .NET object livesin a context, which stores objects that have context attributes compatible withit.
A context is represented by aclass Cont ext . Here are some ussful methods available in this class.

public class Context ({
public virtual int ContextlD {get;}
public virtual |ContextProperty[] ContextProperties {get;}
public virtual |ContextProperty CGetProperty(string nane);

The property Cont ext | D returns an identifier for the context that is unique within the context's AppDomain.

A context stores one or more properties. A context property is represented by an interface, | Cont ext Pr operty,
and is uniquely identified by a name within the context. A context property can be accessed by its unique name by
cdling Get Pr oper t y onthe context. All the context properties can be obtained by calling

Cont ext Properti es.

A context also stores zero or more message sinks. In this case, the message sinks are referred to as the context sinks.

When a context-bound dlass isingantiated, the runtime queries each of its context atributes for compatibility with the
current context. If any of the attributes are not compatible, the runtime crestes a compatible context and houses the
object in the new context.

Context Attributes

Context attributes serve three purposes:

They inform the runtime if a context-bound object is compatible with the specified cortext.

2. They contribute properties to the new context. These properties can be programmatically accessed a runtime
from within atype's methods.

3. They contribute zero or more message sinks.

A context attribute is defined by a class that inherits from the class Syst em At t r i but e andimplementsan
interface | Cont ext At t r i but e (namespace Syst em Runt i me. Renot i ng. Cont ext s).

Let's develop asmple context attribute that contributes the name of the developer as a context property. Hereisan
example of its usage:

236

[Devel oper ("Jay")]
public class Foo : ContextBoundCbject {

The .NET Framework providesaclass, Cont ext At t r i but e, that smplifies developing context atributes. The
following code excerpt shows an implementation thet inherits from this dass

/1 Project ContextProperties/Devel operAttribute

[AttributeUsage(AttributeTargets. d ass)]
public class Devel operAttribute : ContextAttribute {
private String m Nane;
public Devel operAttribute(String nane): base("MyDevAttr") {
m _Nane = nane;
}
public override void GetProperti esFor NewCont ext (
| ConstructionCal | Message ctor) {
Devel oper Property dev = new Devel oper Property(m Nane);
ctor. Cont ext Properties. Add(dev);

public override bool |sContextOK(Context ctx,
| ConstructionCal | Message ctorMsg) {
Devel oper Property prop =
ct x. Get Property(Devel oper Property. KEY) as
Devel oper Property;
if (null == prop) {
return fal se;

}
bool context OK = (this. m Nane == prop. Devel oper);

return context OK;

Hereiswhat happens when an ingtance of class FoO isingantiated. The runtime instantiates

Devel oper Attri but e andcdlsl sCont ext OK to check if the caller's context is competible with the attribute.
If the method returns f al s e, the runtime obtains the context property by caling

Cet Proper ti esFor NewCont ext , creates anew context, and places the property into the new context.

Thelogicin | sCont ext OK ensures that no two developers can share the same context. Don't try this a work.
Cresting a context for each developer may not be a good idea for red gpplications.

Note that the context attribute object can add as many properties as desired by caling
Cont ext Properti es. Add repeatedly.

237

The context attribute object is not needed again until anew context-bound object isingantiated.

Let's now examine our context property class, Devel oper Property.

Context Properties

A context property is defined by a classthat implements| Cont ext Pr oper t y. Hereisits definition and
description:

interface | ContextProperty {
/1 The runtine uses the property nane to
/1 uniquely identify the property
public String Nane { get; }

/1 The runtime creates a new context and calls this
/1 method to check if the new context is conpatible
publ i ¢ bool |sNewCont ext OK(Cont ext ctXx);

/1 The runtime calls this to indicate that no nore
/'l properties can be added to the context

public void Freeze(Context ctx);

Here is some of the rlevant code from our implementation:

/1 Project ContextProperties/Devel operAttribute

[Serializable]

public class Devel operProperty : | ContextProperty {
public static readonly String KEY = "Devel oper";
private String mNane; // Store the devel oper's nane

public String Nanme {
get {return KEY;} // return the identifier

public String Devel oper {
get {return m Nane; }

publ i c bool |sNewContext OK(Context ctx) {
[l W will force a new context for each devel oper.
Devel oper Property prop =
ct x. Get Property(KEY) as Devel oper Property;
if (null == prop) {
return fal se;

238

}
bool context K = (Devel oper == prop. Devel oper);

return context OK;

The code is seif-explanatory. Just note that a property class must be marked as[Ser i al i zabl e] . Theimportance
of thiswill become evident when we discuss context sSinks.

We arefinished cregting the context attribute and the context property. It is now time for usto apply it on aclass. The
following code demonstrates how to apply Devel oper At t ri but e on acontext-bound object and how the name

of the developer can be obtained within the context during runtime.

/'l Project ContextProperties/Foo

[Devel oper (" Pradeep")]
public class Foo : ContextBoundCbject {

public int Add(int x, int y) {
Devel oper Property prop =
Thr ead. Current Cont ext . Get Property(Devel oper Property. KEY)
as Devel oper Property;
t hr ow new Excepti on(" Contact " + prop. Devel oper);
return (x+y);

Straightforward, isn't it?

It isinteresting to note thet if you gpply more than one Devel oper atribute on the same class, the runtime picks
just one attribute and Smply ignores the rest.

Context Sinks

Context sinks provide an interception point in the communication. They alow you to hook the messages as they enter
and leave contexts. There are four kinds of context snks, each of which serves a different purpose. A server context
sink isused to indal a context-wide interceptor for calls entering the server context. This sink is represented by the
interface| Cont ri but eSer ver Cont ext Si nk. A client context sink is used to instal a context-wide
interceptor for cdls leaving the server context. This sink is represented by the interface

| Contri buted i ent Cont ext Si nk.An object sink is used to install a per-object interceptor in the server
context. Thissink is represented by theinterface| Cont ri but eObj ect Si nk. An envoy sink isused to ingall a
per-object interceptor in the client context. Thissink is represented by theinterface | Cont r i but eEnvoySi nk.

239

Note that the envoy sink isthe only onethat isingaled in the client context. All others are meant to beingtaled in the
server context.

From an implementation perspective, dl the context sink interfaces are smilar. All of these interfaces have just one
method of the following type:

| MessageSi nk Get XxxSi nk(| MessageSi nk next Si nk) ;

The method name is different for each interface. For example, | Cont ri but eEnvoySi nk hasthe method
Get EnvoySi nk. However, dl of them essentidly return a message sink when queried for.

A context sink interface isimplemented on the context property object. Recall that the runtime obtains one or more
context property objects from the context attribute by caling Get Pr oper t i esFor NewCont ext . Later, when
the first out-of-context call comesin, the runtime checksiif the context property object supports any of the context sink
interfaces. For each interface that is found, the runtime calls an gppropriate Get Xxx Si nk method on the context

property object, obtains the message sink, and insertsit in the appropriate sink chain.

Here is a code excerpt that defines an envoy sink on a context property. The complete source can be found on the

companion Web site.

/'l Project EnvoySi nk/ M/TraceSi nk

[Serializable]
public class M/TraceProperty :
| Cont ext Property, | ContributeEnvoySi nk

{
public | MessageSi nk Get EnvoySi nk(
Mar shal ByRef Cbj ect nbro, | MessageSi nk next Si nk)
{
return new MyMessageSi nk(next Si nk) ;
}
}

Thefirst parameter to Get Envoy Si nk represents the object for which the interceptor is being ingtalled.

Note that the runtime mandates that a context property bemarked as| Ser i al i zabl e] . Without this, the remoting
layer throwsaSeri al i zat i onExcepti on.

Call Contexts

While we are on the subject of contexts, .NET provides another type of context that you should be aware of, the call
context. The call context represents the logica thread of the execution code path. Objects can be added to the call
context asit travels down and back up the execution code path, and examined by various objects dong the path. This

240

makesit possble for either the developers or the runtime to pass extra information about a specific execution code
path.

The call context is encapsulated inthe Cal | Cont ext class (namespace

System Runt i ne. Renot i ng. Messagi ng). All the methods in this class are static and operate on the call
context of the current thread. The static method Set Dat a can be used to store an object in anamed datadot,
wherees the static method Get Dat a can be used to retrieve an object by the name of the data dot. Another static
method, Fr eeNanedDat aSl| ot , can be used to empty anamed data dot.

It isinteresting to note that athough any object can be stored in the call context, only those objects that implement a
standard interface | Logi cal Thr eadAf f i nat i ve can propagate to a different AppDomain. Internaly, when a
cdl ismade on an object from a different AppDomain, the runtime generates an instance of the class

Logi cal Cal | Cont ext and sendsit dong with the remote call. Objects that do not support

| Logi cal Thr eadAf fi nati ve arenot transmitted in Logi cal Cal | Cont ext .

The SDK includes a sample that shows how extrainformation can be passed in the call context.
Transparent and Real Proxies

There are two proxy objects in the remoting infrastructure that work together to make cals from a client to aremote
server. The proxy object that the client object deals with is actualy an instance of aruntime class cdled

Tr anspar ent Pr oxy. The mgority of the work is done by a helper object of type Real Pr oxy. When the dient
makes amethod cdl, the Tr anspar ent Pr oxy checksthe cdl againg its type information, bundlesthe cal
parameters into a message object, and handsit over to the Real Pr oxy object. The Real Pr oxy object isthen
responsible for forwarding the message acrass the configured channel.

For every Tr anspar ent Pr oxy object, thereisacorresponding Real Pr oxy object. Y ou can obtain the
Real Pr oxy object fromthe Tr anspar ent Pr oxy object by caling a satic method,

Renot i ngSer vi ces. Get Real Pr oxy. Likewise, you can obtainthe Tr anspar ent Pr oxy from the
Real Pr oxy by cdlingthemethod Get Tr anspar ent Pr oxy onit.

Casting a Transparent Proxy

P\ Consider thefollowing line of code:
—

—
p—
—

Foo f = (Foo) Activator.GetObject(...);

You know that Act i vat or . Get Qbj ect eventudly reurnsaTr anspar ent Pr oxy
object to the cdler. Hereiswhat happens when you cast the Tr anspar ent Pr oxy object to
the type Foo.

A Real Pr oxy object implements astandard interface, | Renot i ngTypel nf 0. Whenthe
cdler cagtsthe Tr anspar ent Pr oxy object to a specific type, the Tr anspar ent Pr oxy
object cdlsthel Renot i ngTypel nf o. CanCast To method onthe Real Pr oxy object
to check if the cast is supported. If the method returns true, the cast is accepted.

241

You canimplement CanCast To onyour own Real Pr oxy derived class and support
cading the Tr anspar ent Pr oxy object to any other unrdated type. The SDK includes an
example that demongtrates this.

In generd, the proxy object pair is crested when:

1. A dient activates an MBR object that is not competible with the current AppDomain or context.
2. An MBR object is passed as a method parameter or areturn vaue from one context to another.

Object References

When an MBR object is passed from its context or AppDomain to another context or AppDomain, the runtime needs
to transfer the whereabouts of the MBR object to the other context so that remote method calls can be made on the
MBR object. The runtime packages the whereabouts of the MBR object in an object of type Cbj Ref . The Cbj Ref
contains the information that describes the type of the object being marshded, the URI of the specific object, and
information on how to reach the application domain or context where the object lives, such as channd information,

and so on.

When the MBR object is marshaled, the runtime crestes an Obj Ref object representing the MBR object, seridizes
the Cbj Ref object, and transfersit to the remote AppDomain, possibly in another process or compuiter. In the target
domain, theinformation is deseridized and an Cbj Ref iscreated. The runtime then proceedsto creste a

Real Pr oxy object, passingin Cbj Ref asaparameter. The Real Pr oxy object then createsa

Tr anspar ent Pr oxy object and returnsit to the client.

Things are dightly different for a srver-activated object. Although the proxy pair gets created when

Act i vat or . Get Obj ect iscaled, the remote object, and henceits Cbj Ref , are not crested until amethod call
is made on the object. On the first method call, the remote object is created, its Cbj Ref isobtained, and it is passed
back to the Real Pr oxy inthe dient's AppDomain.

Custom Proxies

The remoting architecture had a purpose in separating the proxy intoa Tr anspar ent Pr oxy object and a
Real Pr oxy object. Whereasthe Tr anspar ent Pr oxy isaninterna classthat cannot be extended, the
Real Pr oxy dasscan be extended. Thisis useful for many purposes:

To trace the method calls being made on the proxy object.
To perhaps handle some method calls localy, thus saving network round trips.
To support casting a trangparent proxy to another type.

A w NP

To perform load baancing (depending on the load on the servers, routing the call to an appropriate server).

The SDK includes afew samples that show how to extend the Real Pr oxy classto create your own custom proxy. |
have dso included a sample (Project Cust onPr oxy) on the companion Web site that demonstrates how a custom
proxy can be associated with a given context-bound type such that ingtantiating the type automaticaly crestes the

242

custom proxy for the type. For those interested, this is achieved by means of extending an attribute called
ProxyAttri but e. Thissampleisbased on asample posted on hitp://www.gotdotnet.com/, which, by the way, is

agood source of developer information on .NET technology.

Channels

Channds are objects responsible for transporting messages across remoting boundaries. When amethod call is made,
the client channel is responsible for seridizing the message object (using aformatter) into a stream and transporting it.
The server channd is responsible for receiving the stream data and transforming it back to a message object that can
then be forwarded to the context sink. On return, the processis reversed. The server channd seridizes the data (using
aformatter) and sends it back to the client channdl, where it is transformed back to a message object.

Some commonly used channel classssin .NET are TcpChannel and Ht t pChannel .

Channds must exposethe | Channel interface. Client channds must expose | Channel Sender , aderivation of
| Channel . Server channels must expose | Channel Recei ver , another derivation of | Channel . The
TcpChannel andHt t pChannel classesimplement both these interfaces so that they can be used to send and

recaive information.

Channels can be registered in two ways, ither by cdling the familiar
Channel Servi ces. Regi st er Channel method or by loading them from the remoting configuration file.

Information in the remoting configuration file can be specified in two ways. Y ou can either declare a channel template,
and then reference this channd in your gpplication, or specify al channd information directly in your gpplication.
Channd settings must be defined under theconf i gur at i on\ syst em runti me. r enot i ng\ channel s

path.

The globa configuration file Machi ne. Conf i g defines sometemplates, suchast cp and ht t p, that should be
sufficient for most gpplications. Within your application file, you can refer to these templatesusing the r ef attribute
and adding any additiona information such as the port number, and so on. An example is shown next. Here, the
channd template referred to ist ¢ p and additiona information is the port number 8085:

<confi guration>
<system runti ne. renoti ng>
<appl i cati on nane="MRenoti ngHost " >
<channel s>
<channel port="8085" ref="tcp" />
</ channel s>
</ appl i cation>
</ system runtine.renoting>
</ configuration>

A channd is uniquely identified by a name within the AppDomain in which it is registered. The default name for

TcpChannel ist cp andfor Ht t pChannel isht t p. If you wish to register more than one ingance of the same
type of channel, you need to provide a different name for the channel during registration. Both classes teke an

243

overloaded condtructor that tekes a parameter of type| Di ct i onar y. You can create adictionary object, set the
name, port, and any other information (e.g., proxy server to use for HTTP requests) and pass this object to the
congructor. Thisisillustrated in the following code excerpt:

/'l Project Channel s/ MiltipleChannels

public static void Main() {
I Dictionary prop = new Hashtabl e();
prop["name"] = "M/SecondChannel ;
prop["port"] = "8087";
Ht t pChannel channel 2 = new Ht t pChannel (prop, null, null);
Channel Servi ces. Regi st er Channel (channel 2);

The project dso shows how to enumerate through the registered channelsin an application.

Formatter Sinks

Formatter sinks seridlize the message object into a message stream and vice versa. Some standard formatter sinks are
Bi naryC i ent Formatt er Si nk and Soapd i ent For mat t er Si nk onthedient sdeand

Bi narySer ver For mat t er Si nk and SoapSer ver For mat t er Si nk onthedient side. The binary
formatter sinksinterndly use Bi nar yFor mat t er and the SOAP formatter sinksinterndly use
SoapFormatter.

A dient formatter sink istypicaly thefirst sink in the dient channd, dthough, as we will see shortly, it is possible to
insert additiona message sinks before the formatter sink. Likewise, a server formatter Snk istypicdly thefirs snk in
the server channd.

Thefunction of aformatter isto generate the necessary headers and seridize the message object to the stream. After
the formatter, the message object is till forwarded to each of the sinksin the sink chain. However, as the message has
dready been seridized, changing the message does not change the information in the stream.

By default, the TCP channdl is set to use the binary formatter and the HTTP channdl is st to use the SOAP formatter.
However, you can change this behavior for your application by associating a formatter with a gpecific channdl. The
simplest way to do thisisto reference the formatter templatesthat are defined in Machi ne. Conf i g. Thefollowing

configuration, for example, associates a binary formatter with the HT TP channdl:

<appl i cati on nane="MRenoti ngHost ">
<channel s>
<channel ref="http" port="8090" nanme="MMBi naryHttp">
<cl i ent Provi der s>
<formatter ref="binary" />
</clientProviders>
<server Provi der s>

244

<formatter ref="binary" />
</ server Provi der s>
</ channel >
</ channel s>
</ appl i cation>

A formatter can aso be associated with a channd programmaticaly a runtime. The overloaded congtructors for
TcpChannel andHtt pChannel teke additional parametersjust for this purpose.

Although the standard formatter sinks provided should suffice for most applications, it is aso possible to provide your
own formatter sink. Look into the SDK documentationfor | Cl i ent For mat t er Si nkPr ovi der and

| Server For mat t er Si nkPr ovi der.
Channel Sinks

After transforming the message object to the message stream, the formatter forwards the message object and the
stream object to the first channel sink in the channd.

A channd has at least one channd sink, the trangport sink. The transport sink isthe last Snk in the dlient sink chain
and thefirgt ank in the server Sink chain. These sinks are built into the channel and cannot be extended.

It is possible to creste one or more custom channel sinks and insert them into the channd sink chain, which is useful if
you wish to ingpect or modify the message stream.

To create aclient channd sink, you need to implement theinterface | Cl | ent Channel Si nk; to create aserver
channdl sink, you need to implement | Ser ver Channel Si nk.

In addition to implementing a channd sink, you aso need to implement a provider for the channel snk. When
cregting the sink chain, the runtime queries each channe sink provider to obtain the respective channe sink object.

A client chennd sink provider implements| Cl i ent Channel Si nkPr ovi der and asarver channd sink
provider implements| Ser ver Si nkPr ovi der .

Let's create aclient channd sink provider. However, we will not create a full-fledged client channel sink. The system
provides away to creste amessage Sink as a client channd sink. This message sink can then be placed before the
formatter sink in the channdl.

Hereisthe partid code for the client channel sink provider. The complete source can be found on the companion Web
Ste:

/1 Project MessageSi nk/ MyMessageSi nk

public class M/dientSinkProvider: |dientChannel Si nkProvi der {
private | dient Channel Si nkProvi der
m _next Chnl Si nkProvi der = nul | ;

245

public MydientSinkProvider () { }

public Myd i ent Si nkProvi der (
I Dictionary properties, |ICollection providerData) { }

public I dientChannel Si nk Creat eSi nk(
| Channel Sender channel,
string url, object renoteChannel Data) {
return new MyMsgSi nk(
m_next Chnl Si nkPr ovi der . Cr eat eSi nk(
channel , url, renot eChannel Dat a)) ;

public 1dientChannel Si nkProvi der Next {
get { return mnext Chnl Si nkProvi der; }
set { m.next Chnl Si nkProvi der = val ue; }

The channel sink providers themselves form a chain. The runtime setsthe Next property on each provider to define
the next provider.

The runtime then callsCr eat eSi nk on the first provider in the chain, passing in some channel-specific information.

Thismethod is responsible for cregting its sink as well asthe next sink, and chaining them together. The method then

returnsits sink.
Hereis a code excerpt for MyMsgSi nk:

/'l Project MessageSi nk/ MyMessageSi nk

public class M/MsgSi nk :
BaseChannel Chj ect Wt hProperti es,
| MessageSi nk, 1d i entChannel Si nk

private | MessageSi nk m next MsgSi nk = nul | ;
private | dientChannel Si nk m next Chnl Si nk = nul | ;

public MyMsgSi nk(obj ect next Si nk) {
m _next MsgSi nk = next Si nk as | MessageSi nk;
m next Chnl Si nk = next Si nk as | d i ent Channel Si nk;

/1 | MessageSi nk net hods (al ready fam liar)
public | Message SyncProcessMessage (...) {...}
public I MessageCirl AsyncProcessMessage(...) {...}

246

public | MessageSi nk NextSink { get {...} }

/1 1dientChannel Si nk Met hods
public I dientChannel Si nk Next Channel Si nk {
get { return mnextChnl Si nk; }

}

/1 These nethods just throw an exception
public void AsyncProcessRequest(...) {...}
public void AsyncProcessResponse(...) {...}
public Stream Get Request Strean(...) {...}
public void ProcessMessage(...) {...}

Our dlient channd sink implements| Cl i ent Channel Si nk and | MessageSi nk. Of course, any of the
| A i ent Channel Si nk methods are not to be used, so their implementation simply throws an exception.

MyMsgSi nk isderived from BaseChannel Goj ect Wt hProperti es. Thisstandard class provides abase
implementation of a channel object.

Now the only thing left to do is to place the provider information in the application configuration file. Thisis done
using the<pr ovi der > tag, as shown here

<channel s>
<channel ref="http">
<cl i ent Provi der s>
<provi der type="M/d i ent Si nkProvi der, MyMessageSi nk" />
<formatter ref="soap" />
</clientProviders>
</ channel >
</ channel s>

Tomake aclient channd sink act as amessage sink, the key isto place the provider information before the formatter
information.

Intraprocess Communication

SERE Have you been wondering what channel is used for cross-context or cross-AppDomain
—— B communication within the same process? Clearly, using a TCP channd or an HTTP channdl in
this scenario may be overkill.

Your guessis right. For intraprocess communication, the runtime uses a combination of the
private classes Cr ossCont ext Channel or Cr ossAppDonai nChannel , as
appropriate. Both classes can be found in MSCor Li b. dI | under the namespace
System Runti nme. Renot i ng. Channel s.

247

The Complete Picture

In this section, we covered a number of advanced topics. Let's put al them together and see if Figure 6.9 makes sense
NOw.

When an MBR object is marshaled from its AppDomain or context to another AppDomain or context:

1. Theruntime createsaReal Pr oxy object corresponding to the MBR object.
2. TheReal Pr oxy objectinturn createsaTr anspar ent Pr oxy object.
3. TheTr anspar ent Pr oxy object returnsit to the caller.

When aclient makes a synchronous method cdl on the proxy, the Tr anspar ent Pr oxy object reads the
parameters from the stack, buildsan | Message object, and handsit over to the Real Pr oxy object.

TheReal Pr oxy object forwards the message to the first context envoy sink in the envoy sink chain. The envoy sink
in turn forwards it to the next envoy sink in the chain. The last sink in the chain forwards the message to the message
dnk chain in the channd.

Thelast sink in the message sink chain isthe formatter sink. This sink converts the message object to amessage
dream and forwardsiit to thefirgt item in the client channel sink chain. The origina message object is dso passed
aong, but at this point it can only be inspected.

Thelagt Snk in the client channel sink is the trangport sink. This sink takes the message stream, adds the necessary
headers, and then writes this stream out to the wire.

On the server Side, the server transport sink reads requests off the wire and passes the request stream to the server
channe sink chain. The server formatter sink at the end of this chain deseridizes the request into a message object and
forwardsiit to the server context sinks.

Thelast sink in the complete chain isthe stack builder snk. This sink takes the message object, recreates the stack,
and invokes the actua method on the MBR object.

On return, the return vaue is converted to a message object and then to a message stream in the server channdl and is
sent to the client channel. The client channel reconstructs the message stream and forwards it to the client channel sink.
Eventudly, the return val ue comes back to the client object.

A smilar, more complex, process tekes place for asynchronous method calls. The extra complexity arises from the
fact that a sink has to keep track of the response message.

At this point, it isworth mentioning an optimization technique that the NET remoting architecture provides. If a
method is not expected to return any vaueto the cdler, it can be attributed with OneVay At t r i but e (namespace
Syst em Runti me. Renot i ng. Messagi ng), asillustrated here:

/1l Project OneVayMet hod/ Deno

248

public class Foo : Marshal ByRef Cbj ect {

[OneViay]
public voi d DoSonet hi ng() {

When amethod is marked as one way, the client channel does not have to wait for a response from the server.
Therefore, when a client makes a cal on a one-way method, the cdl returnsimmediately to the cdler. The server,

however, continues to execute the call.

Idedlly, amethod marked with OneVay At t ri but e must haveavoi d return vaue and must tekeonly [1 n] type
method parameters. However, the NET remoating mechanism lets you annotate any method with this attribute. This
includes methods that have anonv oi d return vaue or [out] type parameters. The server-side St ackBui | der
simply discards the return values. If the executing method throws any exception, this too is caught by the

St ackBui | der and smply discarded.

Summary
Application domains provide isolation between different gpplications running on the same system.

A context provides a runtime environment for compatible objectsto live in. It contains one or more context properties
and context sinks. Context properties provide passive services. Context sinks provide active interception-based

SErvices.

When an object is activated, the runtime houses the object in the cdler's context if the context attributes on the object
are compdtible with the cdler's context. If not, the runtime creates a competible context and houses the object in the
new context.

An application domain holds one or more contexts. When an application domain is created, the runtime cregtes a
default context within the AppDomain. Subsequently, more contexts may be created within the domain as more
objects are created.

When aremote object is created or an object is passed to another domain as a method parameter, the runtime
transforms the object into a block of memory suitable for tranamitting to the other context. This processis referred to
as marshding. Subsequently, the importing domain can unmarsha the block of dataand creste a new object that has
similar characterigtics to the origind object.

Under .NET, objects are classified as MBYV objects, MBR objects, and nonremotable objects. When an MBV object is
moved to a different domain, an exact copy of the object is made in the target domain. When an MBR object is moved
to atarget domain, the runtime creates a proxy object in the target domain and returnsit to client. Any cdl on the

249

proxy object isintercepted by the runtime and is forwarded to the origina object in the remote domain. These objects
cannot leave their domain.

MBR objects are further classified as context-bound objects or context- agile objects. Context-bound objects are bound
to a context and reguire proxy marshding if moved to a different context, even if the context isin the same

AppDomain. A context-agile object does not require any marshding within the AppDomain but needsto be

marshaed when moved to a different AppDomain.

A remote object can be created as a server-activated object or a client-activated object. Server-activated objects are
those objects with alifetime thet is directly controlled by the server. The lifetime of a client-activated object is
controlled by the client. Server-activated objects are usudly identified by aname, so they are dso called well-known
objects.

Server-activated objects can be published in two modes, single-cal or sngleton. A single-cal object mode implies
that the remote object be created on each method call and torn down after the call returns. A singleton object mode
implies that the remote object be created just once on the first method cal and be reused on subsequent method calls.

NET uses alease-based technique to manage the lifetime of MBR objects. An MBR object, either client-activated or
singleton, can be associated with alifetime lease. When the lease expires, the object is destroyed (garbage collected).
However, .NET provides various ways to extend the lease.

It is possible to store the object activation information in externd configuration files. This provides flexibility to the
adminigrator in configuring an application. The configuration files can be crested on the server Sde and the client
Sde.

NET remoting applications can aso be hosted under ASP.NET. However, this requires aclient to be on the NET
platform. True platform independence can be achieved by creating Web services. ASP.NET makesit easy to develop
and test Web sarvices. The .NET platform aso makes it convenient for clients to consume the Web services.

The .NET remoting framework provides full managed code type system fidelity over the network. The mechanism is
opento use TCP, HTTP, or any other proprietary channel. The message can be formatted in binary, SOAP, or using a
cugtom formatter. In addition, different types of sinks can be added at various stages in the remoting pipeline.

References

[MS-02] Microsoft Visua Studio Team, " Getting Started with XML Web Servicesin Visual Sudio .NET," MSDN
Library, February 2002.
msdn.microsoft.com/library/en-us/dv vbvestechart/html/vbtchGettingStartedwWithX ML WebServicesinVisua StudioN

ET.asp

250

Chapter 7. Interoperability

The .NET Framework provides support for managed code to interoperate with unmanaged code. The unmanaged code
could either be COM-based or bein native DLLs. The .NET Framework has been designed to provide smooth
interoperability. In this chapter, we examine the support for interoperability provided by the NET Framework. By the
end of the chapter, readers will be comfortable making cals from managed code into unmanaged code and vice versa,

Introduction

.NET provides a number of features, such as garbage collection and managed memory, that make programming esser

and safer than before. However, there are millions of lines of existing code that are here to stay for a considerable time.
One of the gods of the NET Framework designers was to provide smooth interoperability between managed and
unmanaged code.

Let's refresh our understanding of managed and unmanaged code. Managed code is the code that is written according
to the specifications of the common language runtime (e.g., providing metadata). Managed code can take advantage of
the services provided by the common language runtime such as garbage collection and enhanced security. Unmanaged
code on the other hand is any code that does not target the common language runtime and hence cannot take
advantage of the services offered by runtime. Existing COM components, native DLLs, and so on, fal under the
unmanaged code category.

The common language runtime supports:

Managed code making cdls into native DLLs.
Managed code meking calsinto COM components.
Wrapping .NET code as COM components so that unmanaged code can deal with them.

To support marshaling across native DLLs as well as COM components, the .NET Framework defines a collection of
classes under the namespace Syst em Runt i ne. | nt er opSer vi ces. Some examples of these classes are
Marshal ,Dl [I nport Attri bute,and Mar shal AsSAttri but e. Later in the chapter, we will see how these
classes, and many others, let us define and control the marshaing behavior. Unless otherwise explicitly mentioned,

any class rdated to interoperability that we discussin this chapter can be assumed to belong to the

System Runti nme. | nt er opSer vi ces namespace.

At this point it is worth mentioning that the primary purpose of .NET's support for interoperability isto ded with
exiging Windows-based code. Keep in mind that .NET assemblies making calls to the unmanaged code may not be
portable to other platforms.

Findly, it isworth mentioning that Microsoft has added extensions (caled Managed Extensions) to Visua C++
language to support mixing managed and unmanaged code fregly. Obvioudy, the unmanaged code will not be gble to
take advantage of the services provided by the common language runtime. However, Managed Extensions do provide
the ability for you to port your existing code incrementaly, without incurring the cost of porting the whole application

251

at once. Y ou can maintain your existing code base as unmanaged but gtill write newer code as managed code to take
advantage of the new features of the NET Framework. Asamatter of fact, you can smply compile your existing C++
codewiththe- cl r compiler switch to produce an output that is compatible with the common language runtime
(what Microsoft calls "It Just Works."). Covering Managed C++ is beyond the scope of this book. Two good
references on Managed Extensions to C++ are [Sel-01] and [Ras-01].

Managed Code to Native DLLs

The common language runtime provides a service that enables managed code to cal unmanaged functions
implemented in DLLs. This service is known as platform invoke, or PInvokefor short.

To understand how PInvoke works, let's start with making acal to MessageBox, aWin32 AP that isimplemented
inuser 32. dl | . Making callsto Win32 APIsisthe most likely scenario you will run into. In the first version of

the .NET runtime, many of the Win32 features have not been provided in the NET Framework Class Libraries,
requiring you to obtain the desired fegture by invoking the Win32 API from your managed code.

Note that the .NET Framework aready definesaMessageBox cdassunder Syst em W ndows. For ns
namespace. Y ou would never need to cal the Win32 MessageBox AP, but it provides agood example of how

PInvoke works.
A Simple Example
Hereisthe Win32 API prototype for MessageBox:

i nt WNAPI MessageBox(HWND hwhd, LPCTSTR | pText,
LPCTSTR | pCapti on, U NT uType);

Hereis a C# example that invokes MessageBox:

/'l Project PlInvoke/Sinpl ePl nvoke

using System
using System Runti ne. | nt er opServi ces;

class M/App {
[DIlnmport("user32.dl1")]

public static extern intMessageBox(SystemIntPtr h,
string m string c, uint type);

public static void Main() {
int retval =
MessageBox((IntPtr) O, "H!", "Geetings!", 0);

252

As shown in the code, there are three things that are needed to set up afunction for Pinvoke:

1. TheDLL function that needsto beinvoked must be marked aspubl i ¢ stati c extern.
2. TheDLL to which the function belongs to should be indicated with the attribute
Dl InportAttribute.
3. Theparameters and return vaue should be matched with their C# equivadents. Thisway, the runtime knows
how to marshd data to and from the function. Some basic Win32 datatypes and their C# equivdents are

shownin Table 7.1.

Table 7.1. PInvoke Datatypes

Win32 Managed Class C#
HWND, HANDLE, HMODULE, |[System I nt Pt r System IntPtr (no real
Any handle equivalent)
BYTE System Byt e byt e
SHORT System I nt 16 short
WORD System Ul nt 16 ui nt

INT, LONG System I nt 32 i nt

UINT, ULONG, DWORD System Ul nt 32 ui nt
BOOL System I nt 32 bool
CHAR Syst em Char char
LPSTR, LPWSTR, LPCSTR,|System String orstring
LPCWSTR System StringBuil der

FLOAT System Si ngl e f | oat
DOUBLE Syst em Doubl e doubl e

By defaullt, the name of the function in the method definition is the same as the name of the function inthe DLL.
However, the NET Framework alows you to rename the function within your managed code. Thisis accomplished
by means of the Ent r yPoi nt attribute field, as shown here:

/'l Project

[Dllnport("user32.dl 1",
public static extern int
uint type);

string c,

Pl nvoke/ Si npl ePl nvoke

MsgBox(System I ntPtr h,

public static void Min() {

retval

= MsgBox((IntPtr) O,

"HT

Ent r yPoi nt =" MessageBox")]

"Greetings!",

string m

0);

253

Developers familiar with the Win32 AP will know thet thereredly int alVes sageBox function, but rather two
versons, MessageBoxA (for ANSI) and MessageBoxW(for Unicode). One of the interesting things about
Pinvokeisthat it is aware of such differences. By default, it internaly mapsthe AP to the ANSI verson. However,
you can explicitly specify the character set by means of the Char Set attribute, as shown here:

/'l Project PlInvoke/Sinpl ePl nvoke

[DiI I nport("user32.dl 1", EntryPoint="MessageBox",
Char Set =Char Set . Aut 0) |

public static extern int SmartMsgBox(SystemIntPtr h, string m
string ¢, uint type);

public static void Main() {

retval = Smart MsgBox((IntPtr) O, "H!", "Geetings!", 0);

Character set Char Set . Aut o indicates the runtime to pick the appropriate version automaticaly. For example, on
Windows NT, it automatically calls the Unicode version, whereas on Win9x it would cdl the ANS version.

Behind the scenes, the runtime marshals the data from the managed side to the unmanaged side so that the data can be
understood by the unmanaged code. For example, Syst em St r i ng gets marshded into null-terminated char or
WCHAR arrays (depending on the definition). Once the unmanaged function returns, some marshaing might be

required to ded with the return value and the parameters that return data.

The .NET Framework defines afew more attribute fields that can be used to adjust the method definition. Check the
SDK documentation for more details.

PInvoke and Performance

g Theinterop marshaer has to perform two extra operations before invoking the actua Pinvoke
— i method.

First, the security mechanism under .NET triggers astack walk to ensure that dl the callers

have the necessary security permission (referred to as UnmanagedCode permission) to
invoke the unmanaged code. However, this step can be diminated by applying the attribute
Suppr essUnnmanagedCodeSecuri t yAtt ri but e ether to the Pinvoke methods or
to the dass containing the Pinvoke methods. This resultsin subgtantia performance savings.

Be warned, though, that incorrect use of this attribute can create security weakness. The
implementer of the class must ensure that the dassis secure.

Second, the marshaler has to create a stack frame that is compatible with the unmanaged code.
Microsoft has put much effort into optimizing this step. In the best case scenario, setting up the
gack frame and invoking the method takes very few machine language ingtructions.

254

With this basic understanding of Pinvoke, let's move on to some more interesting scenarios.

String Type as Output

In the previous example, we looked at passing strings as input to an unmanaged function. However, it is dso possible
to passin a string-type parameter as a buffer to the unmanaged function and let the unmanaged function fill the buffer.
There are many Win32 APIs that fit this bill. Let's see how to invoke one such function.

For our example, welook a aWin32 API, Get TenpPat h. Hereisits Win32 definition:

DWORD Get TenpPat h(
DWORD nBuf f er Lengt h, /1 size of buffer
LPTSTR | pBuf f er /] path buffer

)

Thefunction Get TenpPat h returns the path for the temporary directory on theloca machine. The string valueis
returned in parameter | pBuf f er .

Recall from Chapter 5that the St r i ng classunder .NET isinvariant. Therefore, for caseswhere St r i ng isused as
an output parameter, you cannot usethe St r i ng class. Indtead, you should usethe St r i ngBui | der class.

Here is the prototype declaration for Get TenpPat h in C#:

[DI1nport("kernel 32")]
public static extern uint GetTenpPath(uint size,
StringBuil der buf);

The fallowing code shows how to use this function:

/1 Project PlInvoke/ StringQutput

public static void Main() {
const int size = 255;
StringBuil der path = new StringBuil der(size);
Cet TenpPat h(si ze, path);
Consol e. Wi telLi ne(path);

It isimportant to alocate a proper size to the buffer being passed before cdling the unmanaged AP, as shown in the
preceeding code.

Thereis one case of string output that requires specid attention when a function returns a pointer into the process
environment or similar kernel data structure. Consider, for example, the Win32 APl Get CommandLi ne:

255

LPTSTR Get CommandLi ne(VA D) ;

Thefunction Get ConmandLi ne returns a pointer to the command-line string. Asit pointsinto the process
environment, the caler must not free the returned string. However, if the return valueisdeclared as st 1 i ng typein

the managed code, the PInvoke marshaler assumes that the memory should be freed.

To ensure that the returned pointer does not get freed, the return type must be declared as| nt Pt r andnot st ri ng,

as shown here:

[DI1nport("Kernel 32", Char Set =Char Set . Aut 0)]
public static extern IntPtr Get CommandLi ne();

The framework provides a collection of static methods, Mar shal . Pt r ToSt r i ngXXX, to obtain acopy of the
netive string. For example, Mar shal . Pt r ToSt r i ngAut o automaticaly detectsif the native string is ANS! or
Unicode and obtainsacopy of itasst r i ng. Thisisillustrated in the following code excerpt:

/1l Project PlInvoke/ StringQutput
public static void Main() {

IntPtr p = Get CommandLi ne();
String cnd = Marshal . PtrToSt ri ngAut o(p) ;
Consol e. Wi telLi ne(cnd);

Besides converting pointers to strings, the Vair shal dass provides anumber of useful methods dealing with
managed and unmanaged transitions. Check the SDK documentation for more information. We cover some of these
methods later in the chapter.

Pointers

We know that .NET uses garbage collection for managing hesp memory. Because of the nature of garbage collection,
the memory being used by avariable may be relocated during the collection. Thisis not a problem for managed code.
The garbage collector freezes the execution of the code during the collection, effectively preventing the managed heap
from being accessed. After the collection is performed, the execution resumes with the variables pointing to the
relocated memory locations.

For unmanaged code, however, the runtime has no control over how the code accesses the memory. Therefore, if a
garbage collection occurs while some unmanaged code is executing, the code may access an invalid memory location,
resulting in unpredictable behavior, possibly a crash.

To prevent such unpredictable behavior, the NET Framework provides for freezing the memory location for a
vaiable. Essentidly, the variable gets "pinned" to the memory location. Let's see how to pin a varigble. Consder the

following Win32 API for reading data given afile handle. It requires a pointer to a buffer to be passed as a parameter.

On successful return, this buffer isfilled with the read data:

256

BOOL ReadFi | e(

HANDLE hFi | e, /'l handle to file

LPVA D | pBuf fer, /] data buffer

DWORD nNumber O Byt esToRead, /'l nunber of bytes to read
LPDWORD | pNunber O Byt esRead, /'l number of bytes read
LPOVERLAPPED | pOver | apped /'l overl apped buffer

)
Hereisthe managed code declaration for this API:

/'l Project PlInvoke/Pinning

[Dl1nport("kernel 32", SetlLastError=true)]
static extern unsafe bool ReadFile(IntPtr hFile,
voi d* | pBuffer, uint nBytesToRead,
uint* nBytesRead, IntPtr overl apped);

The mapping for the first four parametersto ReadFi | e is straightforward. The fifth parameter isapointer to a
structure used for overlapped input operation. Aswe are not interested in using this feature, we can get avay with
declaring thispointer as| nt Pt r .

Use IntPtr for Any Opaque Pointer

\ s Ifan unmanaged AP takes a pointer as a parameter and you do not intend to use the pointer
: within your managed code, you can declare the pointer as| nt Pt 1, irrespective of the

datatype the pointer is pointing to.

Recall that Win32 HANDLE is an example of such an opague pointer. We don't use the handle
directly within the managed code. We obtain it viaone Win32 API, such as Cr eat eFi | €,
and just pass it around to other Win32 APIs, suchasReadFi | e.

Note that the function ReadFi | e isdeclared asunsaf e. Recall from Chapter 4 that under C#, pointers can be used
only within unsafe code and you need to compile your code with the - unsaf e compiler switch.

The declaration dso introduces anew argument tothe DI | | mpor t congtructor, Set Last Er r or . Many Win32
APls induding ReadFi | e, generate an unsigned 32-bit error code on failure. This error code can be retrieved using
the Win32 APl Get Last Er r or . Theerror code is vdid only for the last call to aWin32 API. Before you get a
chanceto retrieve it from the managed code, the runtime interndly may cal some other Win32 AP, effectively

wiping away your error code. If Set Last Er r or isset to true, the runtime will fetch the error code and cacheit on
the logica thread. Y ou can obtain this error code from the managed code using a static method

Mar shal . Get Last - W n32Er r or . If you wish to obtain the error code as an HRESULT, you can call

Mar shal . Get HRFor Last W n32Er r or ingtead.

257

Before cdling ReadFi | e from the managed code, the buffer being passed to the function has to be pinned. In C#,
this can be done using the keyword f i xed, asillustrated here:

/'l Project PlInvoke/Pinning

public unsafe uint Read(byte[] buffer, uint bytesToRead) {
ui nt bytesRead = 0;
fixed (byte* p = buffer) {
ReadFi | e(m handl e, p, bytesToRead, &bytesRead, NULL);

}
return bytesRead;

Statement f 1 Xed pins the specified variable within its scope. Once the scopeis exited, the pinned varigble
automatically gets unpinned and is subject to garbage collection.

Pinvoke and Memory Pinning

SERE From the interop marshaer's point of view, a managed datatype can be classified asisomorphic

— or nonisomorphic. An isomorphic datatype has its memory representation identica in both the
managed and the unmanaged world. An example of such atypeistheclassSyst em | nt 32.
Managed structures with sequentia layout type (covered shortly) can aso beisomorphic. For
such a datatype, the interop marshaler pins the managed memory and passes the pinned
memory location to the unmanaged code. For al other cases, a conversion from managed
representation to unmanaged representation is required. The interop marshaler dlocates
memory (using the COM API CoTaskMemAl | oc) to hold a copy of the managed datain a
layout that the unmanaged code expects and passes the location of the new memory to the
unmanaged code. When the code returns, any out parameter is converted back to its managed

representation.

Asan optimization, whenthe St r i ng or St r i ngBui | der dassismarshaed by vaue, the
interop marshaer passes adirect pointer to the internal Unicode buffer instead of copying it to
anew buffer.

WhenaSt ri ng object is passed by reference, the marshaler makes a copy of theinput. This
way, even if the callee modifies the contents, the immutability of the origind string is
maintained.

WhenaSt ri ngBui | der object is passed by reference, the marshaler passes adirect string
to theinternal Unicode buffer. In this case, the caller isresponsible for creeting astring of
adequate length, as discussed earlier.

258

Note that C# does not | et you assign amanaged variable to a pointer without using thef | xed statement. Y ou would
get an error from the compiler.

The statement f i xed can pin only one variable. If you need to pin more than one variable, you can do that by nesting
fi xed statements.

Looking a the earlier code excerpt, you may be wondering why variable byt esRead was not pinned. Thisis
because garbage collection is performed on the heap, not on the stack (see Chapter 4). Thus, there is no need to pin
stack-based variables, such asbyt esRead in thisexample

At this paint, it is worth mentioning that under .NET it is also possible to programmatically allocate space on the stack.
Under C#, this can be done using the keyword st ackal | oc, asshown in the following code:

byte* buffer = stackalloc byte[256];

Notethat st ackal | oc can be used only within an unssfe context. It is useful primarily for interoperability.

Safe Declarations

The previous example requires the use of pointers, but not dl .NET languages support pointers. Yet dl languages
need to be able to invoke APIs such as ReadFi | e. Hence, .NET supports marshaling pointers, and many other

unmanaged datatypes, in away such that the APIs can be invoked from any programming language. The declaration
of the Win32 APl ReadFi | e from the previous example can be re-declared as follows:

[Dl1nport("kernel 32", SetlLastError=true)]
static extern bool ReadFile(lntPtr hFile,
byte[] | pBuffer, uint nBytesToRead,
ref uint nBytesRead, IntPtr overl apped);

Notethat the| pBuf f er parameter type has been changed from byt e* tobyt e[| andthenByt esRead
parameter type has been changed from ui nt * tor ef ui nt.

Also note that the method is not marked as unsaf e. By replacing pointer type parameters, we have eiminated the
need for unsafe code.

Based on this declaration, our method Read from the previous example can be redefined as follows:

/1 Project PlInvoke/ Saf ePl nvoke

public uint Read(byte[] buffer, uint bytesToRead) {
ui nt bytesRead = 0;
ReadFi | e(m handl e, buffer, bytesToRead, ref bytesRead,
NULL) ;
return bytesRead;

259

When ReadFi | e isdeclared thisway, the runtime takes care of pinning the buffer; there is no need for explicit
pinning in the code.

Structures

The .NET runtime interop layer aso supports marshaling complex datatypes such as structures between managed and
unmanaged code.

Consider the Win32 APl CGet Syst enili e that returns the current date and time on the local maching

VO D Cet Syst eni ne(LPSYSTEMTI ME | pSyst enili ne) ;

Thefunction Get Sy st enili e takes apointer to structure SYSTEMT| IVE as the parameter:

typedef struct _SYSTEMII ME {
WORD wYear ;
WORD wivbnt h;
WORD whay Of Week;
WORD wDay;
WORD wHour ;
WORD wM nut e;
WORD wSecond;
WORD wM | | i seconds;
} SYSTEMII ME, *PSYSTEMII ME;

To represent this structure in the managed code, each field of the structure must be represented by its corresponding
managed type. Thisisillugtrated in the following C# code excerpt:

[Struct Layout (Layout Ki nd. Sequenti al)]
public struct Systenilinme {

public ushort year;

publ i c ushort nonth;

public ushort dayCOf Week;

publ i c ushort day;

publ i c ushort hour;

public ushort m nute;

public ushort second;

public ushort mlli Seconds;

As can be seen, mapping the structure's fields under managed code is relatively straightforward.

Note that the structure is marked with the St r uct Layout attribute. The NET Framework provides for developers
to specify the layout of a structure'sfilds. Thisis done by meansof aLayout Ki nd enumeration. A
Layout Ki nd. Sequent i al vaueindicatesthat the fields should be laid out in the order in which they are

260

declared. By default, the layout order isLay out Ki nd. Aut o, which meansthat the runtime is free to rearrange the
filds asit deems optimd.

Hereisthe code to declare and call the API:

/'l Project Plnvoke/Structure

public class Wn32 {
[Dllnport("Kernel 32.dl1")]
public static extern
voi d Get Syst enTi ne(ref SystenTine st);

}
class My/App {
public static void Main() {
Systenili me st = new Syst enti ne();
W n32. Get Syst enTli me(ref st);
}
}

Note that when the native structure is represented asaC# st r uct , ther ef directiveis needed on the parameter in
the imported method declaration. Otherwise, because of the semantics of avaue type, a copy of the structureis placed
on the stack.

Also note that | have encapsulated the imported function in a separate class. At this point, | am dso introducing a
good software practice: Wrap dl the imported functions as static methods within one class.

It isdso possible to represent the native structure with a C# dassingead of aC# st r uct . We examine this case
when we discuss directiona atributes later in the chapter.

Controlling the layout isimportant if the structure is being passed to unmanaged code that expects a specific layout. In
most cases, specifying Layout Ki nd. Sequent i al suffices. However, it is dso possible to define the layout
explicitly using the layout enumeration vaue Layout Ki nd. Expl i ci t and specifying each fild's layout by
meansof theFi el dOF f set attribute. Thisisillustrated in the following code excerpt:

[Struct Layout (Layout Ki nd. Explicit)]

public struct SystentineEx
[FieldOfset(0)] public ushort year;
[FieldOfset(2)] public ushort nonth;
[FieldOfset(4)] public ushort dayCf Week;
[FieldOfset(6)] public ushort day;
[FieldOfset(8)] public ushort hour;
[FieldOfset(10)] public ushort mnute;
[FieldOfset(12)] public ushort second;

261

[FieldOfset(14)] public ushort mlli Seconds;

Explicit layout is quite useful if you wish to represent C-style unions in the managed code. All the fidlds within the
union can be declared with the same Fi el dOf f set vaue Consder, for example, the following union definition:

uni on MyUni on {
int i;
doubl e d;

This union can be represented in the managed code as follows:.

[Struct Layout (Layout Ki nd. Explicit)]

public struct MyUnion ({
[FieldOfset(0)] public int i;
[FieldOfset(0)] public double d;

Marshaling Hints

Most datatypes have a common representation in both managed and unmanaged memory. The interop marshaer has
built-in rules to handle datatype transformations. Aswe have seen in previous examples, al thet is needed isto let the
interop marshaer know the equivalent managed datatype for an unmanaged datatype.

There are cases in which the default marshaing behavior is not what is desired or the interop marshaer smply does
not know how to transform the given type. This can happen if a given type can be marshded to multiple types. For
example, dass St 1 i ng can be marshaled as LPSTR, LPWSTR, LPTSTR, or even a COM-gyle string, BSTR. In
such cases, the interop marshaer requires hints from the devel opers on how to transform the managed data.

The marshding hints are supplied in the form of two BCL typesthe class Mar shal AsAt t ri but e andthe
enumeration Unmainaged Ty pe. These hints can be applied to each parameter of afunction, each field of astructure,

and the function's return value.

Consider, for example, the Win32 structure OSVERSI ONI NFO. This structure is used in cals to Win32 AP
Cet Ver si onEx to obtain the version information of the Windows OS on the locd machine:

typedef struct _OSVERSI ONI NFO
{
DWORD dwOSVer si onl nf 0Si ze;
DWORD dwivhj or Ver si on;
DWORD dwM nor Ver si on;
DWORD dwBui | dNunber ;
DWORD dwPl at f or m d;
TCHAR szCSDVer si on[128] ;

262

} GSVERSI ONI NFO
BOOL Get Ver si onEx(LPOSVERSI ONI NFO | pVer si onl nf 0) ;

A reminder isin order that you will never have to call thisfunction directly. The NET Framework aready providesa
gatic method Envi r onnment . OSVer si on that returns the current version number of the OS.

OSVERSI ONI NFOdefinesafidd sz CSDVer si on tha isafixed-sized character array. Recall from Chapter 5 that
thereis no declaration of fixed-sized arrays under the NET programming model. The best you can do isto definea
fidld of type array, as shown here:

public struct OSVersionlnfol

{

public char[] versionString;

The fact that this field represents an array that has to be imported by vaue can be represented using the Mar shal As
attribute with an enumeration vaue UnmanagedType. ByVal Ar r ay. The size of the array can be defined using
thefidd Mar shal As. Si zeConst . Thefallowing code illustrates this:

/1 Project PlInvoke/Adjust Marshal

[Struct Layout (Layout Ki nd. Sequenti al)]
public struct OSVersionlnfol

{

[Mar shal As(UnmanagedType. ByVal Array, SizeConst=128)]
public char[] versionString;

Thereisyet another way to represent fixed-sized character arrays, using the enumeration value
UnmanagedType. ByVal TSt r. Inthis case, the managed datatype can be conveniently declared as of type

St ri ng, asthefallowing code excerpt illustrates:

/'l Project PlInvoke/Adjust Marshal

[Struct Layout (Layout Ki nd. Sequenti al , Char Set =Char Set . Aut 0)]
public struct OSVersionlnfo2

{

[Mar shal As(UnmanagedType. ByVal TStr, Si zeConst=128)]
public String versionString;

263

Note that the character type used by By Val TSt r can be specified by means of gpplying the Char Set attribute to
the structure. Obvioudly, the same Char Set attribute should aso be specified on the imported function.

UnnmanagedType provides many other enumeration values that serve different purposes. Look into the SDK
documentation for more information.

Directional Attributes

Under certain circumatances, the interop marshaler needs to know the direction of marshaing for the parameters. This
is done by way of attributes on the parameter. Possible choicesare[| n] for one-way marshding from managed to
unmanaged code, [Qut | for one-way marshaling from unmanaged to managed code, or [| n, Qut] for two-way

marshding.

Consider the case of cdling Get Syst enili meEx. The function takes a pointer to a structure. Earlier, we declared
the native structure asa C# st r uct . However, it is aso possible to define the native structureasacl ass ingtead of
astruct . However, asaclassdready is of the reference type, the instances of the class are aready treated as
pointers. Hence, the imported method can be declared as follows:

public static extern void Get Systenili neEx(Syst enili neEx st);
Thisis semanticaly equivadent to dedlaring the function as.

public static extern
voi d Get Systenti neEx([In, Qut] Systenii neEx st);

Asthe parameter is used only to receive data, the method declaration can be further refined as:

public static extern
voi d Get Syst enili neEx([Qut] Systenili neEx st);

Note that the imported method declaration should not containar ef directive. Otherwise, asaclassisaready a
reference type, the interop marshaer passes a pointer to a pointer, resulting in unpredictable behavior.

This concludes our discussion of the Pinvoke mechanism. .NET aso makesit possible to invoke COM components
from .NET and vice versa. The services provided by Pinvoke form the groundwork for the COM Interop layer.

As accessing COM components from .NET code will be more likely than the other way around, let's look at this case
fird.

Accessing COM Components from .NET

The companion Web site contains a project caled Test to build aDLL-based COM component that we will use for
our demongtrations. The executableisnamed t est . dl | . Hereis some rlevant information about the component,

taken fromitsIDL file

264

/1 Project ConfronNet/ Test

uui d(653E70B3- 4243- 4A25- B713- O0BFA7A271D02) ,
ol eaut omati on,

]

interface | MyFoo : | Unknown {
HRESULT CGet Greeting([in] BSTR user, [out] BSTR* greeting);

}

uui d(BB79FF11- EEAF- 474C- B28C- F214B893A4B7) ,
version(1.0),

]
library TestLib

{
[uui d(FADA4A73- 76DC- 443C- 838E- E6B98251E428) |
cocl ass MyTest
{
[default] interface | MyFoo;
H
H

As can be seen from the IDL definition, the component exposes a COM class My Test that implements a COM
interface | MyFoo0. Interface | MyFoo definesamethod Get G eet i ng that takesaBSTR user asinput and
returnsaBSTR gr eet i ng as output.

Theimplementation of Get Gr eet i ng can be found on the companion Web site. It essentialy creates astring as
"Hell o " + user andreturnsit asoutput. For example, if theinput userisJay, the output gregtingisHel | 0
Jay.

Notethat | MyFo0 isautomation compatible. Any custom interface that is marked with the ol eaut ormat i on
attribute is automation compatible. In addition, di spi nt er f ace-based or | Di spat ch-based interfaces are dlso
automation compatible.

What's the significance of a COM interface being automation compatible? Recall that the NET programming model

is built around metadata information. To consume COM-style interfaces, .NET requires the metadata for the interfaces.
Asyou may know, COM provides a mechanism called type libraries to store metadata for automation-compatible

COM interfaces. Aswe will see shortly, .NET is capable of consuming the metadata from atype library.

Note that, for interoperability, it is not necessary that a COM interface be automation compatible or that a type library
be available for NET's consumption. In such cases, however, you will have to construct the interface metadata
manualy in your managed code.

265

A type library contains metadata (in binary format) for one or more automationcompatible interfaces. A typelibrary
can either be created as a stand-aone binary file or be embedded in the executable itsalf. In our case, the type library
is embedded in the executable Test . dI | . Thistype library stores metadatainformation on the COM class My Test
aswdl astheinterface | MyFoo.

To extract the metadata from the type library, the NET SDK provides atool caled the Type Library Importer

(t | bi np. exe). Thistool converts the type definitions found within atype library into equivaent definitionsin
a.NET assembly. The generated assembly is referred to as an interop assembly. Thetool contains many options to
customize interop assemblies. The following command line, for example, produces an interop assembly from our
COM component Test . dI | . Theinterop assembly isnamed Test | nport. dl | and theimported types are

wrapped in the namespace My | nport s:

tlbinp.exe Test.dll /out:Testlnport.dll /nanespace: M/l nports
Hereisapartia output from Test | nport . dl | asproduced from the IL disassembler:

. nhamespace M/l nports
{
.class interface public abstract auto ansi inport | MFoo
{
. met hod public hidebysig newslot virtual abstract
i nstance void GCetGeeting(
[in] string narshal (bstr) user,
[out] string& narshal (bstr) greeting)
runt i me nmanagedi nt er nal cal |
{
} /1 end of nethod | MyFoo: : Get Greeting
} /'/ end of class | M/Foo

.class public auto ansi inport MyTestd ass
extends [nscorlib] System (bj ect
i mpl ements Myl nports. | M/Foo

{

} /1 end of class MyTestd ass
} // end of nanespace M/l nports

As can be seen, the type library importer wraps the COM object in an interop layer. Thisinterop layer isreferred to as
the runtime- callable wrapper (RCW). The RCW takes care of transforming each cal to the COM object to the COM
cdling convention. For example, it transforms .NET strings to COM-style BSTR and vice versa. A close ingpection of
thedeclaration of Get G eet i ng from the disassembler's output would make this clear.

At this point, it is worth mentioning that Visua Studio .NET makes the job of generating the RCW easy. Just select
Add Reference from the context menu of a project. The ensuing didog box lets you select any of the registered type
libraries on the local machine. Y ou can aso navigate through directories and select a specific COM component.

266

Visua Studio .NET runs Tl bl np. exe to generate the RCW and adds the generated interop assembly as areference
to your project.

A Simple Example

To accessthe COM component, dl that is needed now is for the managed code to reference the generated assembly
and use the defined types. Here is a code excerpt in C# that illugtrates this:

/1 Project ConfroniNet/Netd ient

using Myl nports;

class M/App {
public static void Geet01() {

| MyFoo foo = new MyTest d ass();
String greeting;

foo. Get Geeting("Jay", out greeting);
Consol e. WiteLine(greeting);

COM programmers will notice that thereis no need to call the COM APl CoCr eat el nst ance to create the COM
object, cal Quer yl nt er f ace toobtainthel MyFoo interface, or cdl Rel ease to release the object. Thisis
because behind the scenes, the RCW calls CoCr eat el nst ance aswel ascther | Unknown methods, AddRef ,
Queryl nt erface, and Rel ease asneeded. Essentidly, the RCW makes the COM object appear asa

native .NET object and makesthe .NET client appear to the COM aobject just asif it were astandard COM client. This
isillustrated in Figure 7.1.

Figure 7.1. Accessing COM components from .NET.

RCW

IUnknown

IM
NET Client e

COM Object

IMyFoo

The RCW goes beyond what is needed for COM interoperability. It goesthrough al the interfaces that are defined in
thecocl ass section and makes the interface methods available as part of the imported class. This diminates the

need to explicitly obtain the interface to make amethod cdl, asillugtrated in the following code excerpt:

/1 Project ConfFromNet/Netd ient

267

public static void Geet02() {
MyTest O ass x = new MyTest d ass();
String greeting;
X. Get Greeting("Jay", out greeting);
Consol e. Wi teLine(greeting);

To run the .NET gpplication, the runtime should be able to locate the interop assembly. One option isto copy the
interop assembly to the application's private path. However, it may be better to ingtdl the interop assembly in the
GAC s0 that the COM component is available to any .NET application that needsit. Recal from Chapter 3 that only
strong-named assemblies can be ingtaled in the GAC. The type library importer provides aswitch, - keyfi | e, to

specify the file containing the strong-named key pair that should be used to sign the resullting interop assembly.

Lifetime Management

The RCW makes the COM object appear as amanaged object. Nauradly, the managed object hasto follow the rules
of the common language runtime. An interesting result of thisisthat the COM object is released only when the
corresponding .NET object is garbage collected.

Recdl from Chapter 4 that the garbage collection may happen much later than the last time a managed object is used.
To hold the COM object until the NET object is garbage collected may not be desirable in some cases (e.g,, if the
COM object holds some expensive resources).

The RCW has been designed to handle this Stuation. Y ou can explicitly control the lifetime of the COM object from

the managed code. The .NET Framework defines a static method, Mar shal . Rel easeConbj ect , that you can
useto explicitly release a COM object. Thisisillustrated in the following code excerpt:

/1 Project ConfroniNet/Netd ient

public static void LifetimeMntDeno() {
MyTest O ass x = new MyTest d ass();

/'l use x

/1 explicit rel ease
Mar shal . Rel easeContbj ect (X) ;

/1 Don't use X anynore
Once the COM object has been explicitly released, any call made on the corresponding native object resultsin an
exception of type | nval i dContObj ect Except i on.

Error Handling

268

COM APIs and COM interface methods aways have areturn vaue of type HRESULT. COM applications check this
return value to seeif the caled API or interface method succeeded. In case of failure, a COM object can return
additiona error information by means of astandard interface, | Support Err or | nf o.

The .NET programming mode, on the other hand, is based on raising exceptions to indicate error conditions.

To provide the needed compatibility, the NET interop layer internaly checks for COM method cdl failures and
automatically raises NET style exceptions. These NET style exceptions for COM style errors are of the type
COVEXcept i on. All that a.NET application hasto do isto catch and process this type of exception, asillustrated

in the following code excerpt:

/1 Project ConfroniNet/Netd ient

public static void DisplayException() {

try {
/] some code

} cat ch(COVException e) {
Consol e. WiteLine("Exception: {0} (O0x{Z1l:x})",
e. Message, e. ErrorCode);

COM Apartments

A COM apartment isalogica container within a process that enforces certain threading requirements on COM
objects. A thread must enter an apartment before it can accessa COM object. Apartments are either single-threaded
(STA) or multithreaded (MTA). COM objectsingtantiated in an STA can be directly accessed only from the STA
thread that ingtantiated it. COM objects ingtantiated in an MTA can be directly accessed from any MTA thread.
Accessing an object from an incompatible apartment requires marshaling. A process can contain zero or more STAS
and a most one MTA.

Although the NET Framework itself doesn't use gpartments to access .NET objects, it till provides for amanaged
thread to enter a specified gpartment. Otherwise, managed code will not be able to access any COM object.

The gpartment that a managed thread must enter can be specified by setting the Apar t ment St at e property of the
thread to one of the valuesfrom Apar t ment St at e enumeration. Meaningful vaues are

Apar t ment St at e. MT'A (for MTA) and Apar t ment St at e. STA (for STA). Thefollowing code excerpt sets
the apartment state of the current thread to MTA:

/1 Project ConfFromNet/Netd ient

public static void Main() {

Thread. Current Thread. Apart nent St at e = Apart nent St at e. MI'A;

269

By defaullt, the apartment state of the thread isset to Apar t ment St at e. Unknown, inwhich case NET
automaticaly initidizes the thread to MTA when making the firs COM call from the threed.

Thereis a subtle difference between managed and unmanaged threads with regards to their gpartment Satesthat is
worth noting. An unmanaged thread can enter and leave an apartment as many times as desired. A managed threed,
however, can enter the gpartment only once. Once the managed thread enters an apartment, it staysin that gpartment
until it is terminated.

Findly, it is also possible to specify the gpartment athread must enter by meansof STAThr ead or MTAThr ead
attributes on the thread entry point method. The following code excerpt, for example, sets the gpartment of the main
thread to STA:

/1 Project ConfFromNet/Netd ient

[STAThr ead]
public static void Miin() {

DataTypes

Thetype library importer does agood job of wrapping most COM datatypes into their managed counterparts. COM
datatype BSTR ismapped to Syst em St ri ng, aswe saw earlier. Two COM datatypes, variants and safe arrays,

deserve alittle more attention.
Variants

Some programming languages such as VB Script forego the notion of typed dataiin favor of increased programming
simplicity. These typeless languages support only one datatype called a variant. A variant can contain any type of data.
Even many typed languages, such as Visua Basic, support variants natively.

The COM SDK defines a discriminated union to deal with variants. It is caled VARIANT. The COM SDK performs
APIsto ded with variants, such as converting basic datatypes to variants and vice versa, or to copy one variant to
another.

Under .NET, the RCW maps aVARIANT datatypeto Syst em Cbj ect and vice versa. The underlying datatype is
preserved and can be obtained by casting Syst em Cbj ect appropriately.

Consider the following IDL method declaration:

/1 Project ConfronNet/ Test

interface | MyFoo : | Unknown {
HRESULT GCet Dat aType(

270

[in] VARIANT vin, [out] VAR ANT* retVal);

Theimplementation of Get Dat aTy pe examines the datatype of parameter vi n and returns the type information as

aBSTRin the parameter r et Val .

The RCW wraps this method as:

voi d Cet Dat aType(System bj ect vin, out System bject retVal);

Invoking this method is straightforward, as can be seen in the following code excerpt:

public static void VariantDeno() {
M/Test O ass test = new MyTest d ass();

obj ect retVal;

test. Get Dat aType("Hel | 0", out retVal);
String s = retVal as String;

Consol e. Wi teLine(s);

test. Get Dat aType(20, out retVal);
Consol e. WiteLine(retVal);

Safe Arrays

Programming languages such as C++ support arrays intrinsically. However, most do so without any index protection,
sizelimit, and initidization. An array isjust apointer to arandom memory location. Even experienced C++
programmers are reluctant to use raw arrays. Many of them write protect wrapper classes to ded with arrays.

On the other hand, Visud Basic (and now .NET) provides amore protected way of dedling with arrays, it storesthe
array bounds and does a run-time check to ensure that the boundaries are not violated.

To ded with arrays, the COM SDK defines a data structure called SAFEARRAY . A SAFEARRAY isan array of
other automation compatible datatypes.

Under .NET, the RCW wraps safe arrays into a managed array of the corresponding datatype.
Consider the following IDL method definition:

/1 Project ConfronNet/ Test
interface | MyFoo : | Unknown {
HRESULT Concat enat e([i n] SAFEARRAY(BSTR) psa,
[out, retval] BSTR* retVal);

271

The implementation of method Concat enat e (Project Test) takes the safe array of strings as a parameter and
returns a new concatenated string.

The RCW makes method Concat enat e gopear asfollowsin the managed code:

System String Concatenate(System String[] psa);
The safe array isimported as asingle-dimensiordl array with alower bound that starts from zero.

Here is the code excerpt that demongtrates calling this method:

public static void SafeArrayDeno() {
M/Test O ass test = new MyTest d ass();

String[] nanmeList = new String[] {"Jay", "Pradeep"};
String s = test.Concat enat e(naneLi st);
Consol e. Wi teLine(s);

The RCW is dso capable of wrapping a safe array into amore generic form of .NET arrays, the Syst em Arr ay
type. Thisisdone by meansof - sysar r ay switch on the type library importer. Doing so in our example resultsin
the managed code representation as follows:

System String Concatenate(System Array psa);

The advantage of this mechanism is that the arrays can be multidimensiona or can have nonzero lower bounds. The
downsideisthat you lose information about the type of element (although it is captured in a custom attribute).

Custom Wrapper

Availability of atype library makes it easy to develop managed code that accesses COM objects, aswe saw in the
previoussample. Just running t | bi np. exe againgt the type library generates al the necessary metadata and
marshding information that the interop marshaer needs.

Itisaso possible under .NET to define the metadata for COM interfaces within the managed code. Thisis useful in
many cases.

For some reason, the type library is not accessible during code development.

2. Theinterface to be accessed is not automation compatible. COM cannot save the metadata for such an
interface in the type library.

3. Under some cases, the type library is not capable of truly representing the marshding information. An
example of such acaseis conformant arrays. A conformant array is an array whose sze (called
conf or mance) is specified at runtime. Although the conformance can be represented correctly in the IDL

definition, the IDL compiler conveniently drops this information while generating the type library.

272

Let's define a custom wrapper for aCOM interface. Specificaly, we will target marshaing a conformant array:
Here is the definition for the COM interface we will write the custom wrapper for:

/'l Project ConfromNet/ Test
/1 File: Customidl

uui d(018D9CF7- 7C5F- 4161- 8114- 99ECE2EAB361) ,

]

interface | MyBaz : | Unknown {
HRESULT Cetld([out, retval] |ong* pVal ue);
HRESULT Get Array([in] long cEl em
[out, size is(cElem] long array[]);

i
Method Get | d returns an integer. | am adding this method primarily for testing purposes.

Method Get Ar r ay returns an array of integers. The cdler dlocates the array and specifies the size during the
method call. The method implementation just fills the array with some values.

Hereis how thisinterface can be represented in C#:

/1 Project ConfronNet/ CustonmW apper
/1 File: CustonWapper.cs

Com nport,
Qui d("018D9CF7- 7C5F- 4161- 8114- 99ECE2EAB361")
I nterfaceType(Com nterfaceType. | nterfacel sl Uhknown)

]
public interface | MyBaz {

[return : Marshal As(UnmanagedType. | 4)]
int Getld();

voi d Get Array([In, Marshal As(UnnanagedType.14)] int cE em
[Qut, Marshal As(UnmanagedType. LPArray,
Si zePar aml ndex=0)]
int[] array);

273

Attribute Con npor t informs the runtime that the interface was originaly defined asa COM interface. Attribute
Gui d specifiesthe identifier for the interface. Attribute | nt er f aceTy pe is used to indicate whether an interface
isdual ,1 D spat ch only, or I Unknown based. The code indicates that the interface typeis | Unknown based.

Interface | MyBaz defines two methods?TT>Getld and Get Ar r ay. Note thet neither the name of the interface nor
the name of the method needs to match its counterpartsin the origind COM interface. What isimportant is that the
GUID and the layout (including the order of methods) of the interfaces match.

Attribute target r et ur n on method Get | d is applied to the return vaue. The code specified that the return vaue be
marshaled as a 4-byte integer.

Although the preceding code explicitly specifiesthat aC#i nt type be marshaed as a 4-byte integer, it is not
necessary to do so for basic data types. By default, the framework defines the right marshding behavior for i nt as
well as many other basic datatypes.

Take note of the attribute definition onthe ar r ay parameter of method Get Ar r ay . Attribute Qut indicates that
the parameter is used only as an output type. The Mar shal As definition indicates that the parameter must be
marshaled as an array (UnmanagedType. LPAr r ay) and thet the size of the array is defined by the first parameter
to the method (Si zePar am ndex=0). Parameter indexes are zero-based.

Let's also go ahead and define adummy C# class, My Test Cl ass, to represent the origind COM cocl ass. The
following code excerpt showsthe COM cocl ass inthe IDL file and its representation under C#:

/1 Project ConFronNet/ Test

/[l File Test.idl

[
uui d(FADA4A73- 76DC- 443C- 838E- E6B98251E428) ,

]

cocl ass MyTest

{
}

/1 Project ConfronNet/CustomW apper
[
Com nport,
Gui d(" FADA4AT73- 76DC- 443C- 838E- E6B98251E428")

]
public class MyTestd ass {

}

Aswith interfaces, the class definition specifies attributes Cond nmpor t and Gui d. The parameter to the GUID
representsthe CLSID of thecocl ass.

274

Here isthe code excerpt that shows how the custom-defined class and the interface can be used for COM interop:

/1 File CustonmNapper.cs
| MyBaz baz = (1 MyBaz) new MyTest O ass();
Consol e. WitelLine(baz. Getld());

int[] prms = newint[] {-1, -2, -3};
baz. Get Array(prns. Length, prns);
Consol e. Wi t eLi ne(prmns. Lengt h);
for(int i=0;i<prms.Length; i++) {
Consol e. WiteLine(prnms[i]);

Before running this application, remember to build and register the proxy-stub DLL for Test . dl | .

It isleft as an exercise for you to extend this example to marshd an array of interface pointers. Those who are busy
can take a peek a the sample code on the companion Web ste.

The .NET interop marshaer provides agreat ded of support for many other COM interop issues. For example, it is
possible to alocate memory in the COM component (e.g., viaCoTaskMenAl | oc or SysAl | ocSt ri ng) andto
free the dlocated memory in the managed code. Look at the SDK documentation for more details on COM interop. In
paticular, examine the COM interop methods provided by the dlass Var shal .

Late Binding

The RCW example that we have looked a so far isthat of early binding, meaning that the devel oper requires access to
the metadata at the time of building the assembly.

COM programmers are aware that COM supports the notion of late binding; that is, a method that is called is bound to
a runtime instead of compile time. This late binding is possible for COM components that support | Di spat ch

interface.

The .NET Framework supports late binding for COM components supporting the | Di spat ch interface.
Consider the following interface definition:

/1 Project ConfromNet/ Test

interface | MyBar : |Dispatch{
HRESULT Add([in] long paraml, [in] |ong parang,
[out,retval] | ong* val ue);

275

Interface | MyBar isadual interfacein the sensethat it supportstheinterface | Di spat ch aswell asthe custom
interface | MyBar .

For our demongtration, this interface isimplemented in a COM component with the PROGID Test . MyBar . The
implementation of | My Bar . Add adds the two numbers that are passed as input parameters and returns the sum as
output in the third parameter.

Thefollowing code shows how to use this COM component from .NET in alate-binding fashion:

/1 Project ConfroniNet/LateBindi ng

public static void LateBi ndi ngeExanpl e() {
/1 Cbtain type based on prog id
Type t = Type. Get TypeFr onProgl D(" Test . MyBar ") ;

/'l Create an instance using Activator
Obj ect o = Activator. Createl nstance(t);

[l input parameters
oject[] prnms = new object[] {2, 3};

/'l make the call
int val = (int) t.lnvokeMenber ("Add",
Bi ndi ngFl ags. | nvokeMet hod, null, o, prns);
Consol e. WiteLine(val);
Static method Ty pe. Get TypeFr onPr ogl Dreturnsthe .NET type of the COM object whose PROGID is

specified. Thismethod returnsnul | if the object does not implement the | Di spat ch interface.

If you have the CLSID available ingtead of the PROGID, you can cdl another static method
Type. Get TypeFr onCLSI Dto obtain the .NET type.

Once you have the type available, you creste the COM object using Act i vat or . Cr eat el nst ance and cdl the

method using Ty pe. | nvokeMenber . You need to specify the name of the method, the type of method (method or
property), the object you are caling this method on, and the parameters to the method.

Type. | nvokeMenber returnsthelogica return vaue from the interface method (eg., thet is, the parameter
marked withr et val) .

A find word on method Get TypeFr onPr ogl D: One of its overloads can be used to obtain atype from the
specified machine. This enables you to creste an object from a remote machine and invoke methods on the object
(assuming the DCOM gods are happy with your DCOM configuration).

276

This coversthe basics of ng COM components from .NET. The SDK contains some good sample programs on
COM interoperability such as hogting Internet Explorer ActiveX controls within your managed code. David Platt's
artidein MSDN Magazine [Pla-01] is adso worth aread.

Accessing .NET Components from COM

It isaso possible to access .NET components as COM components, athough this scenario is not that common. To
support this case, the NET Framework creates a COM- cdlable wrapper (CCW) around the .NET object, asshown in
Figure 7.2.

Figure 7.2. Accessing .NET components from COM.

IUnknown ccw

IDispatch
O—— _IMyFoo

NET Object

; IMyFoo
COM Client

Let's expose our console greeting .NET gpplication from Chapter 2 asa COM component. Here is the code for
the .NET application:

/1 Project NetFronCom Consol eG eeting
nanespace MG eeting {
public interface | Geeting {

String UserNane { set; }
void Geet();

public class ConsoleGeeting : | Geeting {

private String muser Nane;

publ i c Consol eG eeting() {}

public String UserName {

277

public void Geet() {

The code definesan interface | Gr eet i ng and aclassConsol eG eet i ng that implements thisinterface.
Strictly speaking, it is not necessary to define interfaces in managed code for the purpose of COM interoperability.
Theinterop layer is capable of exposing .NET classes as COM interfaces, as we will see shortly.

Note that to expose a.NET classasa COM class, the .NET class must provide a default congtructor; that is, a
congtructor that does not require any parameters. The COM AP to create an object, CoCr eat el nst ance, does

not know how to pass parameters to the object that it creates.
Let's compile this code into the assembly Consol eG eet i ng. dl | . The command lineis shown here:

csc.exe -t:library Consol eG eeting.cs

Now we need to make the .NET assembly act asa COM component. The .NET SDK provides atool caled the
Assembly Regigration tool (r egasm exe) to do this. The tool reads metadata from a.NET assembly and adds the

necessary entries to the registry. Here is the command line to register our assembly:

regasmexe -tlb: Consol eGeeting.tlb Consol eG eeting.dll

Theswitch - t | b can be used to generate atype library for COM dlients to consume. Hereis apartia output from
Consol eGreet i ng. t |1 b when viewed through the OLE Viewer (0l evi ew. exe):

uui d(71EB53FD- FBDB- 3A97- 828E- 6747B61E6CE4)
dual ,
ol eaut omati on,
]
interface 1Geeting : ID spatch {
[d(0x60020000), propput]
HRESULT User Nane([in] BSTR rhs);

[id(0x60020001)]
HRESULT G eet ();

s

uui d(AAE92664- ECBE- 30B4- 9DAE- CD6F1459CD44)
dual ,
ol eaut onmati on,

278

interface _ConsoleGeeting : |Dispatch {

}

uui d(38CA9DFF- 762B- 31AA- B052- 836243916D06) ,
cust on{ OF21F359- AB84- 41E8- 9A78- 36D110E6D2F9,
M/G eeti ng. Consol eG eeti ng)

]

cocl ass Consol eGeeting {
[default] interface _Consol eGeeting;
interface _Object;
interface | Geeting;

}

Note that the CCW exposes the .NET classasaCOM cocl ass Consol eG eet i ng that supports interfaces
| Greeting,| D spat ch (through inheritance), Consol eG eet i ng,and _(oj ect . Interface (hj ect

represents Sy st em Obj ect andcanbefoundinnscor i b. t1b.

Interface_Consol eG eet i ng representsthe class Consol eG eet i ng itsdf. It isinteresting to note that
whenever you export a.NET class for use from COM, the class public methods do not appear in the corresponding
COM interface (as can be seen in the generated type library). However, you can change this behavior by applying an
atribute Cl assl nt erfaceAttri but e passinginthe classinterface type as an enumeration vaue

Cl assl nterfaceType. Aut oDual . Thisisillustrated in the following code excerpt.

[asslnterface(d assl nterfaceType. Aut oDual)]
public class ConsoleGeeting : IGeeting {

Regasm exe regisers with Windows the type library associated with the specified assembly, irrespective of
whether or not you have specified the- t | b switch. If you just wish to create the type library file from an assembly
but have no interest in registering it, then you must insteed use the Type Library Exporter (t | bexp. exe), another
tool provided in the .NET SDK. The following commeand line, for example, generates atypelibrary Foo. t | b from
theassembly Consol eG eeti ng. dl | .

t| bexp. exe Consol eGeeting.dl|l -out:Foo.tlb

Hereisapatid list of registry entriesthat r egasm exe adds, shownin r egedi t format. Y ou can obtain the
completelist using the - r eg switch on thetool:

[HKEY _CLASSES ROOT\ MyGr eet i ng. Consol eG eet i ng]
@" MG eeti ng. Consol eG eeti ng"

[HKEY_ _CLASSES ROOT\ MyGr eet i ng. Consol eG eet i ng\ CLSI D]
@" { 38CA9DFF- 762B- 31AA- B052- 836243916D06} "

279

[HKEY_CLASSES ROOT\ CLSI D\ { 38CA9DFF- 762B- 31AA- B052- 836243916D06} |
@" MG eeting. Consol eG eeti ng"

[HKEY_CLASSES ROOT\ CLSI D\ { 38CA9DFF- 762B- 31AA- B052- 836243916D06} \
| nprocSer ver 32]

@" C.\ WNDOAB\ Syst enB2\ nscoree. dl | "

"Thr eadi nghvbdel " =" Bot h"

"d ass"="MyG eeting. Consol eG eeti ng"

"Assenbl y"="Consol eG eeting, Version=0.0.0.0, Culture=neutral,
Publ i cKeyToken=nul | "

"Runti neVersi on"="v1. 0. 3215"

[HKEY_CLASSES ROOT\ CLSI D\ { 38CA9DFF- 762B- 31AA- B052- 836243916D06} \
Progl d]
@" MG eeting. Consol eG eeti ng"

Essentidly, the .NET classis exposed asa COM component with the PROGID
MyGr eet i ng. Consol eG eet i ng. The component is registered with Thr eadi ngMbdel setto bot h.

Note that the server associated with the COM classisnscor ee. dl | , the DLL that contains the common language
runtime execution engine. The execution engine in turn loads the assembly specified by the Assenbl y entry.

Also note that managed objects do not have any thread affinity. Internaly, the runtime effectively aggregates the free
threaded marshder (FTM) when exposing managed objects to COM. It is the responsibility of the devel oper to guard
the managed code against possible multithreading issues.

An exception to the managed objects having no thread affinity are serviced components These managed objects act
grictly asif they are COM+ objects, even when caled from other managed objects. We cover serviced componentsin

Chapter 10 when we discuss enterprise services.
Hereisthe C++ client code that accesses the COM component:

/1 Project NetFronConidient

#i nport "Consol eG eeting.tlb"

int trmain(int argc, _TCHAR* argv[])
{

[/ Initialize COM

HRESULT hr = ::Colnitialize(NULL);

/]l Create an instance of Consol eGeeting and obtain
/1 interface | Geeting
Consol eGeeting:: 1 GeetingPtr spGeeting;

280

hr = spGreeting. Createl nstance(
__uui dof (Consol eGreeti ng: : Consol eGreeting));

/1 I nvoke properties and nmethods on the interface
spG eeti ng->User Nane = "Jay";
spGeeting->Geet();

/'l Rel ease the object and uninitialize COM
spGeeting = NULL;

c:CoUninitialize();

return O;

CompiletheprogranasC i ent . exe.

TorunC i ent . exe, youneedtocopy Consol eG eeti ng. dl | intothesamedirectory asCl i ent . exe.
Otherwise the runtime will not be able to locate the assembly. The mechanism of specifying the assembly search path
viaconfiguration filesis available only to .NET applications, not to COM applications.

If you expect that your .NET assembly may be used by multiple COM applications, it may be agood ideato sign the
assembly with a strong name and ingtall the assembly in the GAC. Thisway the assembly is accessible to any COM
gpplication, irrespective of the directory the gpplication residesin.

Here is what happens behind the scenes when you execute the COM client. When the COM dlient calls

CoCr eat el nst ance to create the NET object, the registered COM server, nscor ee. dl | , getsloaded in the
process space. The execution enginein turn loads the assembly containing the NET class and crestes a CCW on the
fly. The CCW converts dl the method parameters and return vaues from native COM typesto .NET equivaents. For
example, BSTRs are converted to .NET gtrings. We have dready discussed the mechanism of datatype conversion
earlier in the chapter.

The CCW dso coverts .NET exceptions to COM-style error code, with support for the interface
| Support Error | nf 0. The sample code on the companion Web site demonstrates how the error description can

be obtained when acdl falls.

Lifetime Issues

It isworth noting that when you release the COM object in your unmanaged code, the corresponding .NET object is
not destroyed until the next garbage collection takes place. Unlike the RCW, where you can control the lifetime of the
COM object by using Mar shal . Rel easeConbj ect , thereis no equivaent functiondity from the unmanaged
code to dispose of a.NET object. This could be aproblem if the .NET object is holding one or more COM objects that
were passed to it from the unmanaged code. Not knowing thet there are gill some COM objects dive, the unmanaged
code may close the COM library by cdling CoUni ni ti al i ze. Thismay result in unpredictable behavior when the
COM objects are released later.

281

The recommended solution is to add amethod such as Cl ose or G eanUp on the .NET object that does the
necessary clean up and cdl this method explicitly from the unmanaged code.

Adjusting Interop Attributes

Whenr egasm exe isrun againg a.NET assembly, by default the tool generates dl the necessary COM identifiers
such as GUIDsfor interfaces, type libraries, and coclasses, as well as dispids for interface methods. However, NET
provides many attribute classes that can be applied to the managed source code to customize this behavior. For
example, the following code shows the use of the class Gui dAt t r i but e to specify the GUID for interface

| Greeting:

[Qui d(" 71EB53FD- FBDB- 3A97- 828E- 6747B61E6CE4") |
public interface | Geeting {

TheGui dAtt ri but e canaso beappliedto a.NET class.

By default, the generated PROGID of the dlassis<Nanespace>, <C assNane>. However, you can explicitly
specify aPROGID using the Pr ogl dAt t r i but e attribute, as shown here:

[Progl d(" MyConpany. MyDeno")]
public class |nteropAdjustDeno {

Check the SDK documentation for al other gpplicable attributes.

Hiding Interfaces

N By defaullt, dl the public interfaces, classes, and methods in the managed code are made

: availableto COM applications. However, it is possible to hide some of the information by
using an interop attribute ConVi si bl e.

When this atribute is gpplied with avaue Fal se, the code this attribute is applied to is not

accessible from COM.

This atribute can be applied to interfaces, classes, methods, and even the whole assembly.

This coversthe basics of invoking .NET objects from unmanaged code. It is dso possible to host .NET controls as
COM ActiveX controls. Interested readers may wish to look at [Noy-01].

282

Summary

NET supportsinteroperability with APIsin native DLLs as well aswith COM components. The SDK definesa
collection of classes under the namespace Syst em Runt i ne. | nt er opSer vi ces to support this

interoperability.

The ahility to access APIsin native DLLs s offered through a mechanism cdled Pinvoke, which offers agreat ded of
support for marshaling basic datatypes, pointers, and even structures.

The default marshaing options used by the interop marshder try to make interoperability as seamless aspossible. In
cases where there is an ambiguity on how a managed type can be marshaed, the .NET Framework defines a
mechanism to |et the devel opers provide marshding hints to the interop marshder.

The framework aso defines a mechanism to invoke COM components from .NET applications and .NET components
from COM applications. For accessing COM objects, the interop layer creates an RCW around the COM object and
makes it appear asa .NET object to managed code. For accessing .NET objects, the interop layer createsa CCW
around the .NET object and makes it appear asa COM object to the unmanaged code.

In alater chapter on enterprise services, we will look a how .NET preserves the context information across
the NET-COM interop layer. This makes it possible, for example, for NET aswell as COM components to
participate in atransaction.

References

[Sel-01] Sdls, Chris, "Managed Extensions Bring .NET CLR Support to C++," MSDN Magazine, July 2001.
msdn.microsoft.com/msdnmeag/issues/01/07/vanet/vanet.asp

[Ras-01] Restrepo, Tomas, "Introducing Managed Code to C++," Visual Systems Journal, February 2001.
Www.vs.co.uk/archive/feb2001/hocl-0102.asp

[Pla-01] Platt, David, " Get Ready for Microsoft .NET by Using Wrappersto Interact with COM-Based Apps,” MSDN

Magazine, August 2001. msdn.microsoft.com/msdnmag/issues/01/08/Interop/I nterop.asp

[Noy-01] Noyes, Brian, "Exploit COM Interop in .NET," Visual Basic Programmer's Journal, June 2001.
www.devx.com/premier/mgznarch/ved]/2001/06jun01/ce0106/ce0601- 1.asp

283

Chapter 8. Concurrency

Under Windows, and most other modern OSs, a process can execute multiple threads concurrently, each of which
carry out apecific task. The NET Framework supports developing multithreaded applications in two ways by
supporting the creation and use of threads and by providing a mechanism to make asynchronous cdls. In this chapter,
we examine both these techniquesin detail. We dso look a various issues involved with multithread programming
and the support provided by the NET Framework in developing classes that are safe from concurrent access.

Multithread Programming
Firgt, alittle background on processes and threads as defined by the OSisin order.

A thread isthe basic unit of execution on the Win32 platform, to which the OS allocates processor time. A process
represents a running application that consists of a private virtual address space, code, data, and other OS resources
such asfiles, pipes, and synchronization objects that are visible to the process. A process dso contains one or more
threads that run in the context of the process. A thread can execute just onetask a atime. To perform multiple tasks
concurrently, a process can create multiple threads. Even though only one thread can execute at any time™ the
Windows OS preemptively switches execution from one thread to another. The switching is so fast thet dl the threads
appear to run a the same time.

™ More specifically, thread execution is processor based. A multiprocessor machine can have multiple

threads executing simultaneously.

All threads within a process share the virtua address space and globa variables of that process. However, each thread
has its own stack. Therefore, when athread is executing, any program variables that are created on the stack are loca
to the thread.

A threed is uniquely identified by a numeric vaue. This numeric idertifier is unique only within a process. In other
words, two processes can each have athread that has the same thread ID.

Threads are scheduled for execution based on their priority. Thread priorities specify the rlative priority of one thread
over another and can be adjusted programmatically. The OS can aso adjust the thread priority dynamically.

Often, it is necessary to maintain thread- specific data. However, a gtatic or globa variable cannot be used for this
purpose because it has the same vaue across dl the threads. To address this problem, the OS provides a feature called
thread loca gtorage (TLS). With TLS, it is possible to create a unique copy of avariable for each thread within a

process.

Thisinformation isin the context of the unmanaged world. Things are dightly different in the managed environment
of .NET. For example, aglobd varigbleis globa only within an gpplication domain, not at the processlevel. Also, a
managed thread can be assigned a name, which is useful for debugging purposes.

284

The .NET SDK provides classes that dedl with thread creation, manipulation, and synchronization. The SDK aso
provides comprehensive documentation on their usage.

With this brief background information, let's develop a smple application that demongtrates the use of the NET
classesin creating and manipulating threads. As we go adong in the chapter, we will pick up any other thread-related
information that we need.

A Simple Example

The following code excerpt creates a thread and displays the thread identifier from both the main thread and the
spawned thread:

/1l Project Threads/Si npl eThr ead

using System
usi ng System Thr eadi ng;
public class Foo {

public static void MyThreadProc() {
Consol e. WiteLine("l amin thread: {0}",
AppDonai n. Get Current Threadl d()) ;

}
}
class M/App {
public static void Main() {
Consol e. WitelLine("Main thread: {0}",
AppDonai n. Get Current Threadl d()) ;
Thread t = new Thread(
new Thr eadSt art (Foo. MyThr eadPr oc)) ;
t.Start(); // start the thread
t.Join(); // wait for the thread to finish
}
}

Namespace Syst em Thr eadi ng provides classes and interfaces that ded with multithreaded programming. The
class Thr ead encapsulates the creation and manipulation of a managed thread. This class has a public constructor
that takesadelegate Thr eadSt ar t asaparameter. Here is the definition of the delegate:

public del egate void ThreadStart();

Essentidly, Thr eadSt ar t can be used to specify the entry point for the thread. In our example, the entry pointisa
gatic method Foo. My Thr eadPr oc. However, a nongtatic method can also be specified as the entry point.

Chaining Multiple Methods

285

. AsThreadSt art takesamulticast delegate, it is possible to add more than one method to

— i thededegate. In this case, the thread executes the methods in the order in which they were
added.

Cresgting an instance of thread doesn't spawn the physical thread. To create and execute the thread, you need to cdll
St art onthethread. This method creates the physical OS thread, attachesthe Thr ead object to it (using the TLS),

and starts executing the specified entry point method.

Managed Threads and OS Threads

SERED Any code is always executed on aphysical OS thread. The .NET runtime crestes an OS thread
— |7 andingdlsaThr ead object inthe TLS of the OS thread. A managed thread is essentidly an
OS thread with the Thr ead object attached.

The runtime uses a similar technique when an unmanaged thread enters the runtime through,
for example, a CCW. The runtime checks if the unmanaged thread dready hasa Thr ead
object ingtdled inthe TLS. If nat, it creates one on the fly and inddlsit.

Note that one should not assume a relationship between the OS thread identifier and the

corresponding managed thread. A sophisticated runtime hogt, for example, can move a
managed thread between different OS threads.

To wait for the spawned thread to complete its execution, the main thread cdls Joi n on the ingtance of the thread.
This method blocks the cdling thread until the waited-on thread terminates. However, it is possible to specify thetime
to wait by using an overloaded Joi n method that takes the wait time as a parameter.

Tadal We jud finished writing our first multithreaded program.

Besdes St art and Joi n, there are many other thread- manipulation methods availableinthe Thr ead class. Table
8.1 describes some useful methods and their Win32 counterparts for reference.

Table 8.1. Some Useful Methods on the Thread Class

Method Description Win32 API

Thread. Start Start a thread Creat eThr ead/ ResuneThr ead
Thr ead. Abort Terminate a thread forcefully Ter mi nat eThr ead

Thr ead. Suspend Suspend a thread's execution SuspendThr ead

Thr ead. Resune Resume a suspended thread ResuneThr ead

Thread. Current Thr ead |Returnthe Thr ead object of the current|Get Cur r ent Thr ead

286

thread
Thread. Priority Adjust thread's priority Set ThreadPriority
Thr ead. Nane Assign or obtain the name of a managed|No equivalent

thread
Thread. | sBackground |Background or foreground thread No equivalent
Thread. Joi n Wait for the thread to complete Wi t For Si ngl eHandl e
Thread. Apar t ment St at e |Set or get the COM apartment state ClosetoCol nitial i zeEx

Background Threads

Under .NET, managed threads are classified as foreground threads and background threads. The .NET runtime waits
for only the foreground threads to complete before quitting the application. By default, any explicitly spawned threed,
such asthe onein our previous example, has aforeground status. Therefore, it is not necessary for the main threed to
explicitly wait for the spawned thread to complete before quitting the gpplication.

Class Thr ead providesabool property, | sBackgr ound, that can be used to check or set the background status

of athread. For example, adding the following line in the thread entry point method of the previous example changes
the status of the spawned thread from foreground to background:

Thr ead. Current Thread. | sBackground = true;

Setting athread to background status is useful if you do not wish to wait for the thread to complete when quitting the
goplication.

Aborting a Thread
A thread can be aborted by calling Abor t onthe Thr ead object, asillustrated in the following code:

/1 Project Threads/ ThreadAbort

class M/App {
public static void Main() {

Thread t = new Thr ead(
new ThreadSt art (Foo. MyThr eadProc)) ;
t.Start(); // start the thread
Thr ead. Sl eep(5*1000) ; /'l give the other thread
/'l a chance to execute
t.Abort(); // abort the thread
t.Join(); // wait for the thread to finish

When Abor t iscaled on amanaged thread, the runtimeraisssa Thr eadAbor t Except i on inthe thread.
Thr eadAbor t Except i on isaspecid exception in that dthough it can be caught by the executing code, it is

287

automatically raised once again at the end of the cat ch block. Whether or not you catch this exception, the runtime
eventudly executes dl thef i nal | y blocksin the cal chain and then terminates the thread.

Note the call to Joi n folowing the call to Abor t on the thread. Asthecat ch andthef i nal | y blocksare being
executed, the thread may end up executing an unbound computation. Calling Joi n on the thread guarantees that the
thread has indeed been terminated.

Aborting a Thread During an Unmanaged Call

SERE When Abor t iscdled on amanaged thread that is executing an unmanaged cdl into the

— | native DLLS, the common language runtime does not have much control on the thread.
However, the common language runtime marks the thread for abort and takes control of the
thread when it reenters the managed side.

Incidentally, the code introduces a new static method, Thr ead. Sl eep. Caling this method causes the execution of
the current thread to be temporarily suspended. The parameter to the method is used to pecify the time in number of
milliseconds for which the thread execution should be suspended.

When Thr ead. Sl eep iscaled, the runtime may switch the context to a different thread. If you intend to suspend
the execution of your thread for avery short time, and you do not wish to give up the rest of the time dice dlocated to
your thread, you can use astatic method, Thr ead. Spi nWi t . This method causes the executing thread to wait in
atight loop without causing a context switch. The parameter to the method specifies the number of iterations for the

loop.

In general, Spi NI t isuseful on amultiprocessor system. However, it is not easy to compute an gppropriate vaue
for the Spi NWi t iterations. Moreover, finding a case that judtifiesthe use of Spi N\AAI t isnot easy. My adviceis
to avoid using this method as much as possible.

Resetting an Abort

When Abor t iscaled on athread, the thread is terminated after the execution of the cat ch blocks and the
final | y blocks. However, .NET aso provides an option to the thread being aborted to override the abort directive.
Thisis done by caling the static method Thr ead. Reset Abor t within the catch block, as highlighted in the

following code:

/1 Project Threads/ ThreadAbort

public class Foo {
public static void M/ThreadProc() {
whi l e(true) {
try {
Consol e. WiteLine("l amin thread: {0}",
AppDonmai n. Get Current Threadl d());

288

Thread. Sl eep(20*1000); // sleep for 20 seconds
}cat ch(Exception e) {

Consol e. WiteLi ne("Exception: {0}", e);

Thr ead. Reset Abort () ;

inally {
Consol e. WitelLine("Executing finally");

Multithreading Issues

Multithreading is a powerful technique that can improve the performance and responsiveness of your application. At
the same time, multithreading introduces some complexities into your code that, if not properly atended to during the
design and development cycle, may lead to disadtrous results. In this section, we look at some important
multithreading issues and the support .NET provides to handle them.

Shared Data Conflicts

If two threads have access to the same variable (more precisdy, the same memory location), updating the varigble
from both the threeds may |eave the varidble's vdue in an inconsistent sate. Consider, for example, the following
code:

/1 Project SharedData\ Shar edDat aConfli ct

public class Foo {
public int mCounter = 10;

public void Increase() {
int tenp = m Counter;
m Counter = tenp + 10;

Theinitid vaue of the member fidd m_Count er is10. Themethod | ncr ease bumps up the vaue of

m _Count er by 10. If two threads executed the method | ncr ease, you would expect thevaueof m Count er
to be 30. However, the problem is that the operation isnot atlomic ne thread can get preempted by the OS after
executing thefirst line of code. In this case, the other thread will pick up the samevalue of m Count er asthefirg
thread. Both the threads will add 10 to this value. After the result is stored back, thefind value of m Count er is20
and not 30.

289

Although the example code was a bit convoluted, it doesillustrate the fact that shared data conflicts may arisein
multithreaded applications. Shared data conflicts may menifest themsalvesin anumber of ways. In fact, even if one
thread updates the data while other threads are reading it, the data may get into an inconsistent state. Consider, for
example, the BCL collection classAr r ayLi st . Thisdassinterndly maintains an array and afield, _si ze, that
indicates the tota number of itemsin thelist. Let's say one thread removes an object from the list. Interndly, this
results in updating the array as well as adjugting the field _si ze to reflect the new totd. If the thread is preempted
before si ze isupdaed, adifferent thread picks thewrong valueof _si ze and may try to access an object that has
aready been ddeted. Thisresultsin either aNul | Ref er enceExcept i on or some other unpredictable behavior.

If amemory location (or any other resource for that matter) can potentialy be accessed concurrently from more than
onethread, it is the regpongibility of the developers to provide some explicit mechanism to synchronize accessto such

shared resources.

Fortunately, the NET Framework provides many primitives to protect a shared resource. Let's examine some of the

important ones.
Critical Section

A critica section locks access to ablock of code. While athread owns the lock to the critical section, no other thread
can access the block of code.

Although criticd sectionsimply that sections of code are critica, the semantics of critica sections are more often used

to guard data against concurrent access.

Under .NET, the critical section functiondity is provided by aBCL class, Moni t or (namespace Sy st em). Using
Moni t or , you lock an object, execute a section of the code, and unlock the object. No other thread can lock the
object whileit islocked by one thread. Essentidly, aslong as al the threads agree to lock the object before using it,
the object is safe from concurrent access.

Usingthe Moni t or dass, our previous code can be modified as follows:

/'l Project SharedData/ Saf eShari ng

public class Critical Secti onDeno {
public int mCounter = 10;

public void Increase() {
Moni tor. Enter(this);
int tenp = m Counter;
m Counter = tenp + 10;
Moni tor. Exit(this);

290

The static method Moni t or . Ent er isused to lock an object and static method Moni t or . Exi t isusedto
unlock an object that was previoudy locked in the same thread. The object to be guarded is passed as the parameter to
the static methods. Multiple objects can be locked by caling Moni t or . Ent er on each object.

If athread attempts to lock an object that has already been locked by a different thread, thenaMoni t or . Ent er
call blocks until the other thread unlocks the object. However, Moni t or aso provides a nonblocking method,

Tr yEnt er . Thismethod tries to acquire alock on the object and, if unsuccessful, immediately returnsaf al se
value. An overloaded verson of Tr yENt er aso lets you specify atime period to wait to acquire alock.

Use Perfmon for Contentions

¢ You can obsarve the resource contention behavior for your .NET gpplication by watching a
g :pen‘ormmcecounter Total # of Contentions undertheobject. NET CLR
LocksAndThr eads. Thiscounter isincremented each time Moni t or . Ent er failsto
acquire alock immediately or eachtimeMoni t or . Tr yEnt er fals

Y ou may be wondering why | locked object t hi s, aningtance of FoO0, indead of amore granular object
m_Count er . After dl, it isthisfidd that we are trying to guard against concurrent access. Well, it just so happens
that m_Count er isavauetype. If youtry tolock thisfidd, it will sllently get boxed into an object and the object
will be locked. When a second threed tries to lock the field, it once again will be boxed into an object. However, this
object in redlity is not the same as the object that has been locked in the earlier thread. In essence, you end up locking
adifferent object and not really guarding the field that you intended to.

In fact, asimilar problem arises when you try to unlock a value type variable locked earlier on the same threed. The
variable will get boxed into a new object during the cal to Moni t or . Exi t . Essentidly, you are trying to unlock an
object that was never locked. ThisresultsinaSynchr oni zat i onLockExcept i on.

You could get smart and explicitly box the vaue type field to an object up front, asillustrated in the following code:
public void Increase() {

oj ect o = m Counter;
Moni tor. Ent er (0);

Moni tor. Exi t(0);

Although you managed to get rid of the exception, this code gtill has the problem discussed earlier. The objectsbeing
created in different threads are not the same and therefore do not guard the intended field.

Robust Coding

291

Thereisadight problem in the way we have coded | ncr ease in our previous example. If an exception gets thrown
in the middle of the locked section, Moni t or . Exi t will never be cdled. Asaresult, the object will stay locked

forever.
To ensurethat Moni t or . Exi t isaways called, you can wrap your codeinat ry- f i nal | y, asshown herel

public void Increase() {
Moni tor. Enter(this);
try {
int tenp = m Counter;
m Counter = tenp + 10;
}inally {
Moni tor. Exit(this);

Infact, this style of coding is used so often that C# provides akeyword, | ock, to achieve the same behavior. Using
| ock, the code can be rewritten asfollows:

public void Increase() {
| ock(this) {
int tenp = mCounter;
m Counter = tenp + 10;

Mutual Exclusion

A mut ex isasynchronization primitive that grants exclusive access to a shared resource to only one thread &t atime.
If athread acquires amutex, the second thread that tries to acquire the mutex is suspended until the first thread
releases the mutex.

Under .NET, the functionality of amutex is abstracted in the class Mut ex. You can cal the \WAi t One method to
request ownership of amutex and can call Rel easeMut ex to release ownership of the mutex. Thisisillustrated in
the following code:

cl ass Mut exDeno {
private Mitex m Mitex
private int m Counter

new Mut ex(fal se);
10;

public void Increase() {
m_Mut ex. Wai t One() ;

try {
int temp = m Counter;
m Counter = tenp + 10;

292

}inally {
m_Mut ex. Rel easeMut ex() ;

A mutex can be owned by the creating thread a the time of creation. By passing avaueof f al se to the constructor,
we are indicating that the mutex is not owned by the creeting thread. Thisway, any thread, including the creeting
thread, that wishes to access a shared resource must dways cal Wi t One to own the mutex.

When should we use Mut ex instead of Moni t or ? Well, there are two good cases.

Firg, Mut ex wraps the synchronization handle provided by the underlying Windows OS. Therefore, aMut ex object
can be used to synchronize between managed and unmanaged code.

Second, a Mut ex object can also be used to synchronize across processes. So far we have looked at unnamed
mutexes, but amutex can aso be named. An overloaded constructor of Mut ex takes this name as a parameter. The
nameis treated uniquely within al the processes on the machine. If the named mutex areedy exists at the time of
creation, the MUt ex object attaches to the existing mutex. Otherwise, a new mutex is created. Using a named mutex,

you can synchronize access to a machine-wide resource.

For dl other casss, using Mbni t or ispreferred over Mut ex. Moni t or ismore portable and it is dso effident in

terms of OS resources.

Single-Writer-Multiple-Readers

Generdly speaking, areader thread (or sSmply reader) isthe thread that wishes to examine the contents of a shared
resource and has no intention of modifying it. A writer thread (or Smply writer) is athread that wishesto examine as
wdll as modify the contents of a shared resource.

Note that readers and writers are not mutually exclusive. A thread in areader Sate could be in awriter state later and

viceversa

A shared resource requires protection only if there is the possibility of athread modifying the data while some other
thread is reading or writing to it. Therefore, it would be okay for multiple readers to access the resource aslong as
there is no writer accessing the resource. However, if awriter is accessing a resource, no other readers or writers must
be dlowed to access it until the writer is done accessing the resource. Such functiondity is referred to as
gngle-writer-multiple-readers (SWMR).

Classes Moni t or and Mut ex do not distinguish between areader and awriter thread. They simply provide

exclusive ownership to a resource, irrespective of whether the owner thread is areader or awriter.

However, the NET Framework does provide areader riter-aware synchronization primitive in the form of the
Reader Wi t er Lock class. Usng Reader Wi t er Lock, areader cals Acqui r eReader Lock to own the

293

reader lock, examines the shared resource, and calls Rel easeReader Lock to rdeasethelock. Likewise, awriter
cdlsAcqui reW it er Lock to own thewriter lock, potentially modifies the data, and calls
Rel easeW i t er Lock tordeasethelock. Thisisillustrated in the following code excerpt:

/'l Project SharedData/ Saf eShari ng

cl ass SVWRDeno {
private ReaderWiterLock rw = new ReaderWiterLock();
private int mCounter = 10;

public void Saf eRead() {
rw . Acqui r eReader Lock(Ti nmeout.Infinite);

try {
Consol e. WiteLine("Read: Value={0}", mCounter);

inally {
rw . Rel easeReader Lock() ;

}
public void SafeWite() {
rw . Acqui reWiterLock(Tinmeout.Infinite);

try {
int temp = m Counter;
m Counter = tenp + 10;
Consol e. WiteLine("Wite: Value={0}", m Counter);

inally {
rw . Rel easeWiterLock();

Notethat Reader Wi t er Lock provides the capahility to timeout if alock cannot be acquired within the specified
time. The preceding code uses atimeout vaueof Ti neout . | nf i ni t e that telsthe method to wait indefinitely
until the lock is acquired.

Should you dwaysuse Reader Wi t er Lock instead of Moni t or or Mut ex?Keep in mind that compared to
Moni t or or Mut ex, Reader Wi t er Lock ismore expensive in terms of OS resources, so you should use the

class paringly.
Sharing a Field

If you intend to share a single field among multiple threads, then it is not necessary to use any of the previoudy
discussed synchronization primitives such as Moni t or , Mut ex, and so on. A read or awriteto afield is atomic.
However, sharing afield has one problem. In its zedl to optimize performance, the JT compiler may cache the value

294

of afidd (perhaps storing it in the hardware register). As aresult, when the writer thread updates the field (in the
memory), the reader thread may not pick the updated vaue.

To prevent the JT compiler from performing such optimizations, a shared field must be marked with an atribute
vol at i | e, asshown in the following code excerpt:

cl ass Foo {
private volatile bool mbStatus;

For avolatilefield, the JT compiler does not store the value in the register. Instead, the compiler produces code to
obtain the fidd's value from the memory each time the field is accessed. This guarantees that you always get the
updated vaues.

Interlocking

Sometimes, read and write operations on afield must be performed as a single atomic operation. Obvioudy, locking
thefidd usng Moni t or isquite efficient for such cases. However, for accessng asinglefidd of typei nt , .NET
provides amore efficient class, | nt er | ocked. Someof thel nt er | ocked methods can also be used on the
types| ong, f | oat ,and obj ect .

Table 8.2 ligsthe methods availableon | nt er | ocked adong with their description and the types they can be
applied to.

Table 8.2. Interlocked Methods

Method Description Type Supported

I ncrenment Increment the variable int, long

Decr enent Decrement the variable int, long

Exchange Exchange the value of a variable int, object, float
Conpar eExchange |Compare and exchange the value of a variable int, object, float

From the description of the| nt er | ocked methods, it should be clear that these methods are useful when aread
and awrite to the same memory location must to be performed as one atomic operation.

Thefollowing code excerpt usesthe | ncr enent method to increment the value of varidblem Count er by 1.

public class InterlockedDeno {
public int mCounter = 10;

public void I ncrease() {
Interl ocked. I ncrenment(ref m Counter);

295

Synchronized Methods

.NET aso provides away to synchronize access at the method level. Thisis done using the Met hodl npl attribute
withthe Met hodl npl Opt i ons. Synchr oni zed option on the method, as shown in the following code:

[Met hodl npl (Met hodl npl Opt i ons. Synchroni zed)]
public void Increase() {

int tenp = m Counter;

m Counter = tenp + 10;

The Met hodl npl attributeis present inthe Syst em Runt i nme. Conpi | er Ser vi ces namespace. The
synchronized option specifies that the method can be executed by only one thread at atime. The end result isa
behavior thet is similar to enclosing the entire method in | ock ('t hi s) .

Ingenerd, usng | ock is better than using this attribute primarily because| ock gives you better granularity on the
region of the code to lock.

Synchronization Contexts

Under .NET, a context can be configured such that the runtime providesintringc cal seridization acrossdl the
objects in the context. No two threads can enter the context concurrently, one thread has to exit the context before
another thread can enter it.

Deveopers of aclass specify the synchronization requirement of the class by means of the configurable context
attribute Synchr oni zat i onAt t ri but e (namespace Syst em Runt i ne. Renot i ng. Cont ext s), as

illugtrated in the following code excerpt:

/1 Project SharedDatal/ Saf eShari ng

[Synchroni zat i on(Synchroni zati onAttri but e. REQUI RED_NEW]
cl ass SyncCont ext Deno : Cont ext Boundhj ect {
private int mCounter = 10;

public void Increase() {
int tenp = m Counter;
Thread. Sl eep(10*1000) ;
m Counter = tenp + 10;

296

Recdl from Chapter 6 that context attributes are gpplicable only to classes that are inherited from
Cont ext BoundQpj ect .

The congtructor for Synchr oni zat i onAt t ri but e takes an enumeraion vaue of type
Synchroni zat i onOpt i on asthe parameter. The possible synchronization options are listed in Table 8.3.

Table 8.3. Synchronization Options

Value Description

NOT_SUPPORTED |The class will be instantiated in a context that cannot participate in synchronization.

REQUIRED The class will be instantiated in a context that is configured for synchronization. If the
creator's context is not compatible, a new context will be created.

REQUIRES_NEW |A new context configured for synchronization will be created and the class will be
instantiated in the new context.

SUPPORTED The class does not care if the context has synchronization.

The synchronization option that we used in the earlier code causes a new context to be created when the classis
ingantiated. The ingtance is then housed in this new context. Any call made to any nongtatic method on this object, or

any other object that may reside in this context, is serialized. Only one thread can enter the context at any time.

The synchronization is achieved by means of a context-wide sink that intercepts and seridizes any cdl entering the
context. Recall from Chapter 6 that such asink hasto support thel Cont ri but eSer ver Cont ext Si nk

interface.

Findly, it isworth noting that .NET provides another Synchr oni zat i onAt t ri but e classunder the
namespace Syst em Ent er pri seSer vi ces. Thisdassrelieson COM+ sarvices to provide synchronization.
Unless you require COM+ interoperability in your .NET gpplication, you should use the native NET implementation
of theSynchroni zati onAttri but e dass.

Deadlock and Reentrancy

The preceding mechanism ensures thet only one thread can enter a context at atime but it creates the possibility of a
deadlock. Consider, for example, two objects A and B that belong to two different contexts from two different
processes. Consider the case of nested method calls where A calls amethod on B, and B cdls amethod on A. When
the client cdlsamethod on A's proxy, A's context gets locked for al other threads. Object A then proceedsto call a
method on B. Thisisablocking cal waiting for the response from B. Now B triesto makeacdl on A. Thiscal

comes back to A's context on a different thread that is provided by the underlying communication channel, but A's
context is areaedy locked. We now have a stuation where the call from A to B isblocked and the call fromB to A is
blocked aswell. A deadlock, indeed! This scenario can easily be extended to any number of objects making a chain of
cdlson the same call stack.

To prevent such deadlocks, .NET remoting uses the call context (Chapter 6), which you can think of asthe logica 1D
of agtack of nested calls. Due to the synchronous nature of method invocations, the call context has asingle logical
thread of execution throughout the network, despite the fact that several physica threads may be used to service the
cdls.

297

The cal context begins when athread makes the first call to amanaged method. The common language runtime
generates a cal context object and tags it to this method call and to al the subsequent nested calls from object to
object, process to process, even across host machines. Asthe call progresses, each context covered gets locked with
the identity of the cdl context. If an incoming call arrives while a context islocked, the runtime checksiif the cal
context identity of the incoming call matches that of the one that locked the context. If the identities match, the
runtime lets the call be serviced. If the incoming call is from adifferent cal context, the runtime correctly blocksits
entrance to the activity. Thus, by alowing reentrancy from the same cdler, the synchronization context snk solvesthe
deadlock problem.

Project Shar edDat a/ SyncDomai n shows reentrancy in action.

Synchronizing Collections

In Chapter 5, we looked at using BCL-defined collection classes. Let'slook at their proper usage in amultithreaded
goplication.

Thefallowing dass FOO containsamember fisldm Li st of type Ar r ayLi st :

/'l Project SharedData/ Saf eCol | ection

class M/App {
private ArrayList mlList = new ArrayList();

Our requirement isto protect m_Li St against concurrent access. If your first reactionistolock m_Li st , then
congratulations! 1t shows that you understand the fundamentals of locking. However, .NET distinguishes between a
collection type object and its synchronization access point, or synchronizetion root asit is caled. This provides the
flexibility for multiple datatypes to share the same synchronization root. All the standard collection types support a
property, SyncRoot , that returns the synchronization root object. The Ar r ayLi st object in our sample can be
locked using its SyncRoot property, as shown in the following code excerpt:

class M/App {
private ArrayList mlList = new ArrayList();

public void Dolt() {
| ock(m Li st. SyncRoot) {

Y ou may recal from Chapter 5 that SyncRoot isactudly defined on theinterface | Col | ect i on. Therefore, for
guaranteed thread safety, you should dways lock the SyncRoot property onany | Col | ect i on-based types,
including regular arrays.

298

Synchronize Arrays If They Are Shared

v A ¢ A regular aray also represents a collection type and hence supportsthe SyncRoot property.

H : Always lock this property while accessing an array that is being shared in multiple threads.

Why are the standard collection types designed not to be thread-safe? The primary reason isto avoid the overhead of

thread safety if these classes are to be used within a single thread. However, the NET Framework also provides
thread- safe wrapper classes for many collection classes and afew dassesinthe Syst em | Onamespace (namely

Text Reader and Text Wi t er). This gives developers the choice of either the standard class or its wrapper class,

depending on their needs.

The thread-safe wrapper is obtained by calling the Synchr oni zed method on the collection class, asillusrated in
the following code:

class M/App {
private ArrayList mList =
ArrayLi st. Synchroni zed(new ArrayLi st ());
public void Dolt() {
Consol e. Wi teLine(m_List.IsSynchronized);

The collection classes aso support aproperty, | sSynchr oni zed, that you can use to determineif you are using
the origina collection or its thread-safe version.

The thread-safe wrappers essentidly lock the origina collection's SyncRoot property for al mutating methods. It is
important to understand that only the mutating methods are protected from concurrent access. Other operations, such
as enumeraing through a collection, are intringcaly not thread-safe. Y ou il have to lock the collection during the
enumeration.

Why bother with the thread-safe wrappers if you gill have to lock the collection in some cases? Well, the wrappers
occasiondly take advantage of some implementation details to avoid unnecessary contention. The wrapper is aware of
theinternd optimizations of the origind collection and provides an abstraction that can take advantage of these
interna optimizations. It is generaly better to use the thread- safe wrappers for shared collections.

State Changes

Most modern OSs provide some sort of signaling mechanism for inter-thread communication. One or more threads
wait for a specific type of signd, which typicaly indicates a change in state. On receiving the Sgnd, the threads can
process the changed state.

299

Under .NET, the wait mechanism is encapsulated in abase class, Vi t Handl e, that provides methods to set a
signal or wait for one or more signals. .NET classesthat are based on Wi t Handl e indude Aut oReset Event ,
Manual Reset Event , and Mut ex. These classes wrap the corresponding synchronization handle provided by the
OS.

Events

Under .NET, events comein two varieties: Aut oReset Event and Manual Reset Event . Both types of events,
once sgnaed, remain sgnaed until await request is stiffied. Inthe case of Aut oReset Event , the sateis
automatically set to nonsignaed once await request is satisfied. In case of Manual Reset Event , the state remains
sgndeduntil Reset iscaled explicitly.

Thefollowing code excerpt implementsaproducer onsumer mechanism using aQueue object and an
Aut oReset Event object. The producer adds items to the queue. Each time it adds an item, it sendsasignd to the

consumer threaed. On receiving the signd, the consumer thread processes items from the queue.

/1l Project StateChanges/Events

cl ass MyQueue {
private Queue m Queue = new Queue();
private Aut oReset Event m NewData =
new Aut oReset Event (f al se);
/'l producer
public void AddDat a(i nt val ue) {
| ock(m Queue. SyncRoot) {
m Queue. Enqueue(val ue);

}
m NewDat a. Set (); // signal

/'] dedi cated consuner thread
public void Consumner Thread() ({
whi | e(m NewDat a. Wit One()) {
| ock(m Queue. SyncRoot) {
whi | e(m Queue. Count > 0) {
int value = (int) m Queue. Dequeue();
Consol e. Wi telLi ne(val ue);

The congtructor for the Aut oReset Event takes aboolean parameter to indicate the initid state of thesgnd. A
vdueof f al se impliestha the state will remain nonsignded initialy.

300

The producer adds data to the queue and signals the consumer thread by cdling Set on the event object. The
consumer thread waits for the event by caling WWAi t One on the event object. This method, which actudly is defined
on Vi t Handl e, blocksindefinitely until asignd is received. Upon receiving the signd, the consumer thread

processes the data from the queue.

Note that event signding and protecting data from concurrent access are two different concepts (dthough used in
conjunction most of the time). Asthe queue is being shared between multiple threaeds, each thread gill needsto lock
the queue before accessing it.

Besides\\ai t One, Wi t Handl e provides many other forms of waits. For example, it is possible to wait for one
signd from agroup of sgnds using the static method \\Ai t Any or to wait for al the signals from the group using
another static method, WWAI t Al | . It is dso possible to specify await timeout using both these methods.

Findly, Wi t Handl e objectsinterndly store synchronization handles from the OS. These handles are limited in
number and should not be held if not needed. To let you dispose of handles, Vi t Handl e implements

| Di sposabl e. Although not shown in the sample code, you should dwaysimplement | Di sposabl e onaclass
thet containsan | Di sposabl e-based field such as Aut oReset Event .

Monitor Signals

Vi t Handl e objects represent Windows OS waitable objects. Hence, they are not portable on other platforms.
However, the framework provides a portable version of event signaling vialVbni t or , aclassthat we have aready

used earlier for protecting shared objects. Using Monitor, our previous sample can be rewritten as follows:

/1 Project StateChanges/ Usi nghonitor

class MyQueue {

private Queue m Queue = new Queue();

public void AddDat a(i nt val ue) {
| ock(m Queue. SyncRoot) {
m _Queue. Enqueue(val ue);
Moni t or . Pul se(m Queue) ;

public void Consuner Thread() ({
[ock(m Queue. SyncRoot) {
whi | e(Moni tor. Wait (m Queue)) {
whi | e(m _Queue. Count > 0) {
int value = (int) m Queue. Dequeue();
Consol e. Wit eLi ne(val ue);

301

Static method Moni t or . Pul se isused to raise asignd for the specified object. Static method Moni t or . Vi t
is used to wait for asigna on the specified object. The object must be locked before either of these two methods can
be caled.

Looking at the code, the consumer thread locks the queue in the beginning and never seemsto rdleaseit. Y ou may be
wondering how the method AddDat a ever getsto lock the queue. Actudly method Moni t or . Vi t is

implemented such that it temporarily releases the lock and waits to reacquire the lock. This gives other threads a
chance to lock the object and update the data. When Moni t or . Pul se iscdled, it causes the waiting thread to

move to the active queue so that it can relock the object as soon as the other thread unlocksiit.

Moni t or has been implemented as a purely managed dass, that is, it is not tied to any native synchronization
primitives. This makesit fully portable. Also, it is more efficient in terms of OS resource requirements.

So when doesusing VMAi t Hand| e-based objects make sense? Here are two good cases:

1. Wi t Handl e objects can be used to synchronize between managed and unmanaged code.
2. ltispossible towait on morethan one VAiI t Handl e object at once using the static method
Wai t Handl e. Vai t Al T .

Thread Affinity

On the Win32 platform, certain resources have threaed affinity; that is, such resources can only be used by a specific
thread. Some examples follow:

1. Mutexes have thread affinity. For example, you cannot own amutex on one thread and release it from
another threed.

2. A TLShby itsdefinition has thread affinity. A TLS from one thread is not available in any other threed.
Windows Forms controls can be executed only from the thread in which they are created. If you want to get
or st properties of acontrol, or cal methods from aworker thread, the call must be marshaled to the threed
that created the control.

In the case of Windows Forms, there are afew methods on the control (a.contral is represented by the class

Cont r ol) that can be called from any thread. These methodsinclude | nvoke, Begi nl nvoke, and

Endl nvoke. Thel nvoke method invokes a delegate synchronoudly, whereasthe Begi nl nvoke/Endl nvoke
pair is used for asynchronous operations. When any of these methods are called from aworker thread, the runtime
marshas the cdl to the control's thread.

Certain gpplications al'so may have a specid need to store data on a per-thread basis. Under .NET, the smplest way to
accomplish this task isto define a static variable and annotate it with the[Thr eadSt at i c] attribute as shown

here:

cl ass Foo {
[ThreadStatic] private static int Val ue;

302

A varigble that is marked as thread dtetic is Satic to the thread and the gpplication domain or context. Each threed
sores aloca copy of the variable. However, the copy is till bounded by the application domain (and context if the
object is context-bound); that is, as athread passes through a different domain or context, the domain or context has
its own static copy.

Thereis yet another way to create thread- specific and context- specific data by means of datadots. A datadot storesa
datavalue. A datadot istypicaly identified by a name, athough it is possible to have unnamed data dots.

Under .NET, the datadot isencapsulated inthe dlass Local Dat a- St or eSl ot (namespace Sy st en). However,

the functiondlity of dedling with datadotsis defined as static methods on the Thr ead class. Table 8.4 describes
some Thr ead methods dedling with datadots.

Table 8.4. Data Slot Methods

Method Description

Thread. Al | ocat eDat aS| ot Create a data slot

Thread. Al | ocat eNanedDat aS| ot Create a named data slot

Thr ead. Get NanedDat aS| ot Get a named data slot

Thr ead. Fr eeNanedDat aS| ot Free a previously allocated data slot
Thr ead. Set Dat a Store data in the data slot

Thr ead. Get Dat a Get data from the data slot

The following code excerpt demonstrates using a data dot. The code keeps track of the number of times a specific
thread cdled the Pr oces s method:

/1 Project Threads/ ThreadLocal Storage

class Foo {
readonly String SLOTNAME = "My TLS Slot";

public void Process() {
Local Dat aSt or eS| ot dat aSl ot =

Thr ead. Get NanedDat aSl ot (SLOTNAME) ;

oj ect obj = Thread. Get Dat a(dat aSl ot) ;

int val = 0;

if (null !'=o0bj) {
val = (int) obj;

}

val ++;

Consol e. WiteLine("Thread {0} accessed {1} tinmes",

303

AppDonai n. Get Current Threadl d(), val);
Thr ead. Set Dat a(dat aSl ot, val);

Of course, using aThr eadSt at i ¢ varidble instead of using adatadot can smplify the program, asillustrated
here:

/'l Project Threads/ ThreadLocal Storage

class Bar {
[ThreadStatic] private static int mCounter = 0;

public void Process() {
m _Count er ++;
Consol e. WitelLine("Thread {0} accessed {1} tines",
AppDomai n. Get Current Threadl d(), m Counter);

Performance

Another issue to consider when writing multithreaded programs s performance. Using more threads doesn't
necessarily trandate into better performance, because:

Each thread consumes some system resources. If the resources available to the OS decrease, the overal
performance degrades.

Thread switching is avery expensive operation. The OS has to save the thread context (the register values,
etc.) of the executing thread and load the thread context of the new thread.

It may be useful to look at the performance characteristics of your gpplication using Per f non. .NET provides many
useful countersunder the NET CLR LocksAndThr eads object.

In alater section, we will look a how thread pools can be used to improve performance for a specific case of tasks.

At this point, you should be reasonably comfortable with multithread programming under .NET, the issues associated
with it, and the support provided by the NET Framework to solve these issues. Let's now move on to a different way
of multithreading programming, by means of making asynchronous cals.

Asynchronous Programming

In the previous section, we were explicitly cregting threads and managing therr lifetime. In this section, we let the
common language runtime do the grungy work for us.

304

Under the NET asynchronous programming model, when acal is made to a .NET class method, the cdll returns
immediately. The common language runtime sets up the actua method to be executed in a different thread. This
makesit possible for the caling thread to continue forward with its execution. Contrast this to the synchronous
programming model where the call blocks until the method is completely processed.

Once the method execution completes, the common language runtime provides two ways to obtain the results of the
execution. You can cdl a specific method to obtain the results. Y ou can aso provide a calback function with your
initid cdl s0 that the common language runtime can automaticaly invoke the calback function after the method
execution is completed.

Asynchronous programming is supported in many aress of the NET Framework, including:

Asynchronous delegates
Web services

File O, Socket 10
Networking (HTTP, TCP)

Let'slook a afew important aress of asynchronous programming.

Asynchronous Delegates

Asynchronous delegetes provide the ability to call a synchronous method in an asynchronous manner. Consider the
following code excerpt:

/1 Project AsyncProgranmm ng/ AsyncDel egat e

public class Foo {
public String GetGeeting(String user) {
String retVal = "Hello " + user;
return retVval;

Let's see how we can invoke Get G eet i ng onthe FOO object using an asynchronous delegate. Thefirst sepisto
declare a delegate for the method, as shown here:

public delegate String GeetingProc(String user);

When compiled, this declaration resultsin a class that looks as follows:

public class GeetingProc : MilticastDel egate {
public GeetingProc(Cbject o, int nethod);
public I AsyncResult Begi nl nvoke(String user,
AsyncCal | back cal | back, Cbject 0);
public String Endl nvoke(l AsyncResult result);
public String I nvoke(String user);

305

The methods that can be used for asynchronous programming are Begi nl nvoke and Endl nvoke.

Begi nl nvoke isused to begin the asynchronous cal. The method definition contains two more parameters than
the originad method to be invoked. The second to the last parameter is used to optionaly specify a calback method.
When the invoked method completes, the runtime automatically cals the specified calback method. The last
parameter is used to pass the ate information, which is any information you deem appropriate, wrapped as an object.
This state object is smply made available to the callback method.

Begi nl nvoke returnsavaueof type | AsyncResul t . Thisreturn value can be used later to obtain the outcome
of the invoked method.

The return vaue of the actua method that isinvoked, or the output type parameters, can be obtained by calling
Endl nvoke. The method definition contains dl ther ef typeand out type parameters from the origina method
plus a parameter to passin the return vaue from Begi nl nvoke.

Notethat Endl nvoke isablocking cdl. It returns only when the invoked method completes.

If the invoked method throws an exception, you can catch the exception by putting at r y- cat ch block around
Endl nvoke. Youdo not haveto cdl Endl nvoke unlessyou are interested in processing the outcome of the
invoked method.

Using Begi nl nvoke and Endl nvoke, hereisoneway to cal the method Get G- eet i ng asynchronously:

public class SinpleDeno {
public static void Dolt() {
Foo f = new Foo();
G eetingProc proc = new G eetingProc(f.GetG eeting);
| AsyncResult iar = proc. Begi nl nvoke("Jay", null, null);

String greeting = proc. Endl nvoke(i ar);
Consol e. Wi telLi ne(greeting);

Note that we passedin nul | for the callback function because the main thread explicitly cals Endl nvoke to get
back the results. The cal to Endl nvoke blocks until the common language runtime finishes processing the delegate
method (Foo. Get Gr eet i ng inour case). However, it is also possible to specify a calback function that the
common language runtime can call after it has processed the delegate method. Thisisillustrated in the following

code:

public class AsyncCBDeno {
public static void FinishProcessing(lAsyncResult iar) {
/'l Get the state object, if need be

306

oj ect stateoj = iar.AsyncState;

/1 Get the del egate object
GreetingProc proc =
(GreetingProc) ((AsyncResult)iar).AsyncDel egat e;

/1 Call Endlnvoke on the del egate object
String greeting = proc. Endl nvoke(i ar);
Consol e. WiteLine(greeting);

public static void Dolt() {
Foo f = new Foo();

GreetingProc proc = new GreetingProc(f.GetG eeting);

/'l The exanpl e uses a dunmy state object.
/1 You should pass in a nore neani ngful object.
oj ect statej = new (bject ();
| AsyncResult iar = proc. Begi nl nvoke("Jay",
new AsyncCal | back(AsyncCBDenv. Fi ni shProcessi ng),
stateoj);

Consol e. WiteLine("Witing for FinishProcessing

to becalled...");
Wi t Handl e wh = i ar. AsyncWi t Handl e;
wh. Wi t One() ;

After the common language runtime finishes processing Foo. Get Gr eet i ng, it storesthe return resultsin an
object of type AsyncResul t (namespace Syst em Runt i ne. Renot i ng. Messagi ng). Asour main
method Dol t specifiesFi ni shPr ocessi ng asthe calback method, the common language run-time then
invokes Fi ni shProcessi ng and passesthe AsyncResul t object asthe parameter.

Fi ni shProcessi ng needstocal Endl nvoke on the delegate object, which can be obtained from the
AsyncDel egat e property on AsyncResul t , ashighlighted in the code.

When Fi ni shProcessi ng cdlsEndl nvoke on the delegate, thistime Endl nvoke returnsimmediately with
the results, as the delegate method (Foo. Get G eet i ng) has already been processed.

Note the extralogic in the main threed for asynchronous cal completion. When Begi nl nvoke iscaled, the
common language runtime invokes the origind method using a threed from an internd threed pool. The threadsin the
poal are marked as background threads. Recall that the common language runtime does not wait for background
threads to complete while quitting the application. Therefore, we need away to ensure that the asynchronous call does

307

not get aborted. Fortunately, the | AsyncResul t interfacethat isreturned from Begi nl nvoke provides await
handle by means of an Async\Wi t Handl e property. We can wait on this handle by calling our familiar method
Vi t One (or any of itsvariaions).

Thereisdill one problem with waitingon Async\Wai t Handl e. Thewait sate is signaed when the asynchronous
cdl has been completed, not when the callback method finishes. As aresult, there is no guarantee that the callback
method has completed when the wait state is sgnaled.

A common technique to ded with this problem is to raise an event before returning from the callback method. The
main thread can wait on this event instead of Async\Mi t Handl e. The modified code is shown here:

/'l Project AsyncProgranm ng/ AsyncDel egat e

cl ass Proper AsyncCBDeno ({
private Aut oReset Event m Event = new Aut oReset Event (fal se);

public void FinishProcessing(lAsyncResult iar) {
G eetingProc proc =
(GreetingProc) ((AsyncResult)iar).AsyncDel egat e;
String greeting = proc. Endl nvoke(i ar);
Consol e. WiteLine(greeting);
m Event. Set(); // Let the main thread know

public void Dolt() {
Foo f = new Foo();
GreetingProc proc = new GreetingProc(f.CGetG eeting);
| AsyncResult iar = proc. Begi nl nvoke("Jay",
new AsyncCal | back(t hi s. Fi ni shProcessing), null);

Consol e. WiteLine("Waiting for the callback to
conplete...");
m Event . Vi t One() ;

What would happen if the delegate method throws an exception while processing? Where does the exception go? The
common language runtime catches and stores this exception. Whenever you cdl Endl nvoke, the exceptionis

re-thrown back. Therefore, if you expect your delegate method to throw an exception, you must set up a
t ry- cat ch block whilecdling Endl nvoke.

What about one-way methods; that is, methods marked with OneVay At t r i but e (Chapter 6)? Asynchronous
delegates work equaly well with one-way methods. Of course, cdling Endl nvoke for one-way methodsis
redundant; the runtime discards return values, return parameters, or exceptions thrown from one-way methods.

308

We are done with asynchronous delegates. At this point, it isworth noting that the .NET Framework extends this
mode seamlesdy to .NET remoting. The preceding asynchronous delegate example can very easily be extended
to .NET remoting. It isleft as an exercise for you to make class FOO aremote object.

Web Service Clients

The .NET Framework aso makesit possible to cal aWeb service method asynchronoudy. Given aWSDL
description, the framework generates appropriate client-side proxy code containing the necessary Begi nXXX and
End XXX methods for each Web service method where XXX is the name of the method.

Let'slook a usngthe Cal cul at or Web sarvice that we developed in Chapter 6. For your convenience, | have
listed the Web service code here:

public class My/Cal cul ator : WebService {
[WebMet hod]
public int Add(int a, int b) {
return (atb);

Recdl that the dlient-side proxy code for aWeb sarvice is generated using thetool wsdl . exe. For my setup, the
proxy code is generated using the following command line:

wsdl . exe -o0: Proxy.cs
http://1 ocal host/WsRenot i ng/ Cal cul at or. asmx?wsdl

Tool wsdl . exe generates aclassthat looks as follows:

public class M/Cal cul ator {
public int Add(int a, int b);
public | AsyncResult Begi nAdd(int a, int b,
AsyncCal | back cal | back, object state);
public int EndAdd(1 AsyncResult asyncResult);

Why do | get thisfeding that you dready know how to cal the Web method Add asynchronoudy? Y our smile
probably gave it away.

Although the dient-sde implementation of an asynchronous Web method cal is similar to that of an asynchronous
delegate, thereis one thing that is different. For the asynchronous Web method, the runtime passes the

WebC i ent AsyncResul t object to the callback (recdl that for the asynchronous delegates, the object passed to
thecalback isof AsyncResul t type). AsyncResul t supportsaproperty AsyncDel egat e to obtain the
origina delegate object and cdl Endl nvoke onit. However, currently \ebCl i ent AsyncResul t does not
support any property that will let you obtain the origina Web service object and cal End XXX on it. The workaround

309

thet | useisto pack the Web service object in the Sate object and passit to Begi nXXX. Thisisilludrated in the
following dient-side code for the My Cal cul at or Web service.

/1 Project AsyncProgranmm ng/ AsyncWebServi ced i ent

class Mydient {
cl ass MyState(oj ect {
publ i c Aut oReset Event Event = new Aut oReset Event (f al se);
public MyCal cul ator Calc = new MyCal cul ator();

public static void MyFini shProc(l AsyncResult iar) {
M/St at eCbj ect o = (MyState(hj ect) iar.AsyncSt at e;
int val = o.Cal c. EndAdd(i ar);
Consol e. Wi teLi ne(val);
o.Event.Set(); // let the main thread know

public static void Main() {
M/ St at eChj ect stateChj ect = new My/St at eCbj ect () ;

| AsyncResult iar = stateCbject. Cal c.Begi nAdd(10, 20,
new AsyncCal | back(MyFi ni shProc), stateCbject);

Consol e. WiteLine("VWaiting for the callback to
complete...");
st at eCbj ect. Event. Wi t One() ;

Thread Pooling

Many gpplications use multiple threads, but quite often these threads spend a greet dedl of time in adeeping Sate
waiting for an event to occur. Other times, threads might enter a deeping state and wake up only periodicaly to do
some processing and then go back to deep again. Such applications can benefit from using athread pool, which
maintains apool of worker threads. A thread pool is best suited for small tasks that require multiple threads. Using a
thread pool has many advantages:

The management of the thread pool is usudly abstracted away from you so that you can focus on application
tasks rather than pool management.
A wdl-written thread pool class can optimize throughput and thread time dices based on available system

resources.

The .NET Framework uses thread pools for severa purposes. One that we have aready seen isfor asynchronous cals.
Other uses include socket connections and asynchronous /0 completion.

310

Under .NET, athread pool isimplemented under aclass Thr eadPool . Thereisone Thr eadPool object per
AppDomain. However, & the physicd leve, thereis only one thread pool per process (et leest in thefirst version of
the framework).

Here isthe definition of the dass Thr eadPool . For simplicity, | have shown only those methods that are relevant

for our current discussion:

public seal ed class ThreadPool {

/1 Add itens to the queue
public static bool

QueueUser Wr kl t em(Wi t Cal | back cb, object stateQbj);
public static RegisteredWaitHandl e

Regi st er Vi t For Si ngl eObj ect (Wi t Handl e wh,

Wai t O Ti ner Cal | back cal | back, bject state,
int timeQut, bool justOnce);

/'l Thread pool status
public static void GetAvail abl eThr eads(

out int workerThreads, out int conpletionPortThreads);
public static void Get MaxThr eads(

out int workerThreads, out int conpletionPortThreads);

The static method QueueUser Wr kI t emcan be used to add a task (called awork item in .NET) to the thread pool.

This method takes as a parameter a delegate of type Vai t Cal | back. The definition of this delegate type is shown
here:

public del egate void Wit Cal | Back(object stateChject);

Essentialy, each work item method takes a state object as parameter and hasavoi d return value. The state object is
any object that you want your queued method to have access to.

Hereis asimple code that adds awork item, My Task, to the thread pool:

/'l Project Threads/ ThreadPool

cl ass Foo {
private Aut oReset Event m Event = new Aut oReset Event (f al se);

voi d MyTask(Cbj ect stateChject) {
Consol e. WiteLine("In");
m Event. Set(); // let the main thread know

311

public void Dolt() {
Thr eadPool . QueueUser Wr kI t em(new Wi t Cal | back(Task));

/1 Wait for conpletion (if need be)
m Event . Vi t One() ;

The common language runtime uses one of the threads from the pool to invoke the work item My Task. The
implementation of the My Tas k method uses an event to signd its completion to the main thread, a technique that we
have seen and used in the past.

In the preceding code, the state object provided to the callback isnul | . However, an overloaded version of
QueueUser Wr Kkl t emlets you specify a state object that the runtime passes over to the work item.

The thread pool class d o lets you associate await handle with awork item such that the work item is executed if the
wait handleis signaed. Further, you can aso configure it such that the work item is executed if the wait handle is not
sgnaed within a certain timeout period. All thisis made possible through the static method

Thr eadPool . Regi st er Wi t For Si ngl eCbj ect . The signature for this method was shown earlier. The
delegate type Vi t Or Ti mer Cal | back that this method usesis defined as follows:

public del egate void Wait O Ti mer Cal | back(Obj ect st ate,
bool tinedQut);

Thefirs parameter, st at e, isthe state object as st by the cdler to Regi st er Vi t For Si ngl eCbj ect . The
second parameter, t i medQut , indicates the reason the callback wasinvoked. A vauef al se impliesthat the wait
handle was signaed within the specified timeout interval.

Here is a sample code excerpt that illustrates the use of this method:

/'l Project Threads/ ThreadPool

class Bar {
voi d MyTask(Cbj ect stateCbject, bool tinmedQut) {
Console. WiteLine("In: {0}", tinmedQut);

public void Dolt() {
Aut oReset Event e = new Aut oReset Event (f al se);
Thr eadPool . Regi st er Wi t For Si ngl eQbj ect (
€,
new Wai t O Ti ner Cal | back(MyTask) ,
nul |,
-1,

312

true);

Thr ead. Sl eep(5*1000) ;
e. Set();

Theroles of thefird three parametersto Regi st er Wi t For Si ngl eObj ect are obvious from the signature of
the method and need no further explanation. The fourth parameter, t | meQut , definesthetimeperiodin
milliseconds to wait for the signd. A vaue of ?indicates an indefinite wait. The fifth parameter,] ust Once,
indicates whether to wait just once or reset the wait timer each time the callback is caled.

By setting the fourth parameter to a suitable timeout period and the fifth parameter to f al se, asshowninthe
following code excerpt, you can creste a smple scheduler where amethod is automatically called periodicaly.

Thr eadPool . Regi st er Wi t For Si ngl ebj ect (

€,

new Wai t O Ti mer Cal | back(MyTask) ,
nul |,

10*1000, // wait for 10 seconds
fal se);

Thread Pool Internals

Thereisonly one Thr eadPool object per gpplication domain. The thread poal is created the first time you call
Thr eadPool . QueueUser Wr ki t em or when aregistered wait operation queues a callback method. Once

submitted, awork item cannot be canceled.

Theinitid size of the podl (i.e., the number of worker threads in the pool) is one. As each item is queued, the thread
pool checksif any thread in the pool is available for reuse. If not, it spawns anew worker thread and addsiit to the
pool. Each worker thread runs with the default stack size and priority, and in the multithreaded apartment. When
processing the work item or the callback, the worker thread switches to the correct application domain.

The .NET Framework defines alimit on the maximum number of worker threads per process (not per gpplication
domain). The limit is determined based on the number of CPUs in the machine. Currently, this limit is defined as 25
per CPU. However, aruntime host is dlowed to change the limit to a more suitable value (using the API

Cor Set MaxThr eads).

Besides spawning the worker threads, the thread pool may aso spawn up to two more threads for internal
housekeeping functions.

The redtriction on the number of worker threads does not impose a limit on the number of work items that can be
added. These work items are limited only by the amount of available memory. If awork item is added, and dl the
worker threads are busy, then the work item isjust queued until aworker thread becomes available.

313

Findly, it isworth mentioning that there are times when you may want to create your own thread pool mechanism
instead of using the system+provided Thr eadPool class. Here are some reasons:

Y ou want to place athread into a single-threaded agpartment (all Thr eadPool threads are placed in the
multithreaded apartment).

You need to run atask at aparticular priority.

Y ou need to dedicate a specific thread in the thread pool for certain tasks.

Summary
The NET Framework supports multithreaded programming in two ways.

1. By letting you explicitly creste and use threeds.
2. By letting you make asynchronous calls.

Using theclass Thr ead, you can creste a thread, abort athread, or wait for a thread to complete. Y ou can aso adjust
the properties of athread, such asthe priority and the COM apartment moddl.

Class Thr ead and dl other thread-related classes are defined under the namespace Syst em Thr eadi ng.

Y ou can use asynchronous delegates to make asynchronous cals. In this case, .NET uses threads from a thread pool to
serve your request. Y ou can use Begi nl nvoke to execute a method asynchronoudy and optionaly use
Endl nvoke to retrieve output parameters. The asynchronous delegates work seamlesdly with .NET remating.

Asynchronous calls are also provided by the NET Web services Framework. Use Begi n XXX and End XXX cdlsto
begin and end a Web method.

Multithreaded programming requires careful designing. Some important issues with multithreading are shared
resource conflicts, interthread communication, and performance.

To protect shared resources, the framework provides many classes, including the following:

Moni t or : Provides exclusive access to objects.

Mut ex: Provides exclusive access to a section of code (and therefore data).

Reader Wit er Lock: SWMR lock.

I nterl ocked: Anefficient mechanism for updating avariable.

Met hodl npl : An atribute that synchronizes access to a method.

Synchroni zat i onAttri bute: Anattribute that synchronizes accessto al the objectsin a context.
SyncRoot property: For synchronizing collections.

For interthread signaling, the framework provides the following classes:

314

Aut oReset Event : An event thet, once raised, gets reset autometically.
Manual Reset Event : An event that requires explicit resetting.
Moni t or : A portable version of event signding.

More threads doesn't necessarily imply better performance because of the costs associated with creating a thread. Also,
context switching between threads is an expensive operation.

The framework provides athread pool and a Thr eadPool classto accessit. Some specific tasks can benefit from
using the thread pool.

315

Chapter 9. Security

The .NET Framework offers two security mechanisms—code access security and role-based security. Both security
mechanisms are built on top of the security provided by the underlying OS. Code access security keeps track of where
the assemblies come from and what security permissions should be granted to them. Role-based security enables the
code to make security decisions based on the role of the user executing the code.

In this chapter, we look a the concepts underlying code access security and role-based security. We aso examine the
classes and services provided by the NET Framework to facilitate the use of these security mechanisms.

Security is aso an important consideration for ASP.NET applications. ASP.NET agpplications need to authenticate
clients and provide restricted access to any sendtive data, based on the client credentials. In addition, the ASP.NET
gpplications may also have to act on behaf of the client in some cases to access OS secured resources such asNTFS
files. In this chapter, we aso examine various security features that ASP.NET providesto dedl with authentication,
authorization, and impersonation.

Introduction

Windows is a secure OS. The security offered by the OS protects the loca machine from any unauthorized user
operation. Each secured resource under the OS, such as the Windows registry or an NTFSfile, can be configured to
alow access to some users, while denying access to others. This gpproach, however, fails to address an important
Ssecurity issues users acquiring and running third- party gpplications that potentialy could be mdicious. Today, users
obtain the gpplications from many sources. They have no idea what the gpplication code does interndly. The code
may delete some important files on the local disk. Wordt yet, the code may lesk your private data. The qudity of the
code may be poor; it might contain bugs or vulnerabilities that some other malicious code may take advantage of. The
ease of downloading components over the Internet has exacerbated this security issue.

Microsoft has put alot of thought into designing the NET Framework so that the number of bugs can be reduced in
the code that you develop. Here are some examples:

A common source of security bugs is that developersfail to check the error codes. Under .NET, al the
standard classes throw exceptions in case of an error. This forces developers to check the error conditions.
Array bounds are dways checked, eiminating many sources of buffer overruns.

All varigbles are guaranteed to beinitidized. This avoids people being able to read random bits of memory.
During JT compilation, by default a verification process examines whether the metadata and the MSIL
instructions of the method to be JI'T compiled are type safe (there is away to override this default behavior
using asecurity action called Ski pVer i f i cat i on, which wewill seelater). Type-safe code can access
only the memory locations that it is authorized to access. It is disallowed from accessing dl other memory
locations. Thisisolaion helps ensure that assemblies can execute in the same process without adversely
affecting each other.

316

Although these built-in precautions are good security measures, they don't (and cannot) address the fact that a
third-party assembly may contain malicious code.

To ensure that untrustworthy assemblies do not harm your computer, the NET Framework provides a security
mechanism called Code Access Security (CAS). Based on CAS, code obtained from unknown origins can be
configured to run with restricted permissions, thereby reducing the chances of the code being able to harm your
computer. For example, if you were visiting a Web page that caused managed code to be downloaded and run on your
loca system, CAS would prevent it from formatting your hard drive even though you, as the user, might have the
appropriate Windows NT permissions to do so.

The CAS mechanism enforces security based on the identity of the code, not that of the user. There are times,

however, when an application may wish to make security decisions based on the user's identity and group membership.
To addressthis, .NET provides another security mechanism referred to as role-based security. This security

mechanism enables the code to make security decisions based on the role the user belongs to.

The relaionship between OS security and .NET security can be envisioned asthree leves, each level influencing the
ones aboveit, as depicted in Figure 9.1.

Figure 9.1. Security levels for .NET applications.

Role-Bdsed Security
Enfarced by application on itself

Code Access Securlty
Enfarced by the commen kinguage runtime on the assembly

Windows User Security
Enforced by the OS5 on all the code

Let'slook at the concepts underlying CAS and role-based security.

Code Access Security

Tounderstand CAS, let's develop asimple program that accesses the locdl file system. Here is the relevant code
excerpt:

/1 Project Evidencel/ Foo

[assenbl y: Assenbl yVersionAttribute("1.2.3.4")]
[assenbl y: Assenbl yKeyFil eAttribute(@.\Bi n\ MyKey. snk")]

public class Foo {

public void Store(String s){
FileStreamf = new Fil eStrean("Foo. | og",

317

Fi | eMbde. Append, Fil eAccess. Wite);
StreanWiter w= new StreamWiter(f);
w. WiteLine(s);

w. O ose();
f.d ose();

Method St or e smply opensalocd file Foo. | 0g, appends the specified string to the file, and closesthefile.

We will build this code as alibrary application, Foo. dI | . Note that the assembly is signed with a strong name. This
is needed because we will download the assembly over the network and ingal it in the download cache later in the
experiment.

Here is the code excerpt for the client application, builtasMyCl | ent . exe:

/'l Project Evidence/ Md i ent

public class M/App {
public static void Min() {
Foo f = new Foo();
f.Store("Hello World!'");

Copy Foo. dl | andMyd i ent . exe inadirectory andrun MyCl i ent . exe. Youwill ssethat afileFoo. | og
iscreated in the locd directory. If you open thisfile using Notepad, you will seethat it contains the string "Hello
World!"

Now set up avirtua directory under 11S on the loca machine. Copy Foo. dl | to theroot of the virtua directory. For
my experiment, | am using an diasname Secur i t yDeno for the virtud directory. ThisdlowsFoo. dI | tobe
accessbleusngtheURL htt p: / /| ocal host/ Securi t yDeno/ Foo. dl | .

Copy Myd i ent . exe toanew directory. Do not copy Foo. dl | tothisdirectory. Instead, create an gpplication
configuration filein thisdirectory, MyCl i ent . exe. Confi g, that containsthe codeBase entry for Foo. dl |
that paintsto this URL. Recal from Chapter 3 that the assembly pointed by the codeBase entry isautomaticaly
downloaded and ingtdled in the current user's download cache.

Run My i ent . exe from the new directory. The program will abort with an exception that the codein Foo. dI |
does not have the security permission of type Fi | el OPer mi ssi on.

In both the test cases, it is the same program and the same user. Y et one case succeeded and the other failed. The only
differenceisthat in thefirst case Foo. dl | wasbeing accessed from the locd directory, whereas in the second case

the assembly originated, or was perceived to be originating, from a different machine on the intranet.

318

Thisisthe essence of CAS under .NET. Based on certain evidence about the origin or the author of the assembly, the
assembly is granted certain security permissions such as reading or writing files, changing environmenta variables,

displaying dialog boxes, and so on. The exact set of permissions to be granted is controlled by a security policy on the
loca machine. The standard classes under .NET that deal with any security sensitive operations are designed to
perform the appropriate security check. If the assembly does not have the needed permissions, the security mechanism
throws an exception of type Secur i t yExcept i on.

The security provided by CASis above and beyond the security provided by the underlying OS. Even if some code
successfully gets past the CAS, it il is subjected to the access checks provided by the OS.

Before we go any further, it isworth understanding that athough the permissions are granted at the assembly leve,
the CAS check is performed on the complete call chain. To see why thisis necessary, consider two assemblies, A and
B. Based on the evidence, let's assume A is trustworthy and is granted complete permissions, whereas B is not that

trustworthy and is granted minima permissions. Now consider the case when B makesacdl into A. We have a

problem. Although B has restricted permissions, it can lure A into doing evil things (e.g., destroying your privete

documents, or lesking them out).

To avoid such luring attacks, the common language runtime walks the whole stack and verifiesthat every cdler inthe
cdl chain has the permissions demanded by the operation. If even one cdler in the cdl chain does not have the
requisite permissons, the runtime throws the security exception.

Now let's delve further into various aspects of the CAS.

Code Access Permissions

Code access permissions protect resources and operations from unauthorized use. Each code access permissionis
implemented as a class. Table 9.1 summarizes the code access permission classes that are currently implemented by

the NET Framework.

Table 9.1. Code Access Permissions

Permission

Description

Di rect oryServi cesPerm ssi on

Controls access to Active Directory classes (under the
namespace Syst em Di r ect or ySer vi ces).

DnsPer m ssi on

Controls access to DNS servers on the network.

Envi r onnent Per m ssi on

Controls read and write access to individual environment
variables.

Event LogPer mi ssi on

Controls read and write access to event log services.

Fi | eDi al ogPer nm ssi on

Allows read-only access to files that have been selected by the
interactive user in an Open dialog box.

Fi | el OPer m ssi on

Controls read, write, and append access to individual files and
directory trees.

| sol at edSt or ageFi | ePer m ssi on

Controls access to the isolated storage file system. Isolated

storage provides a unique file system for an assembly.

319

| sol at edSt or agePer m ssi on

Controls access to the isolated storage.

MessageQueuePer mi ssi on

Controls access to Microsoft Message Queue (MSMQ).

d eDbPer m ssi on

Controls access to databases using Object Linking Embedding
Database.

Per f or manceCount er Per m ssi on

Controls access to performance counters.

PrintingPerm ssion

Controls access to printers.

Ref | ecti onPer m ssi on

Allows access to view assembly metadata using Reflection.

Regi st ryPer mi ssi on

Controls read, write, create, and delete access to registry keys,
subkeys, and values.

Securi tyPerm ssi on

This is really a metapermission, as it governs the use of the
security infrastructure itself. Several unrelated permissions are
also grouped under this category. This includes the ability to
execute managed code, call into unmanaged code, skip code
verification, extend the infrastructure (e.g., adding context sinks),
and so on.

Servi ceControl | er Perm ssi on

Controls access to Windows services, both running and stopped.

Socket Per m ssi on

Allows making or accepting connections on a transport address.

Sql A i ent Perm ssion

Allows access to SQL databases.

Ul Per m ssi on

Controls access to user interface functionality such as clipboard,
user input, and so on. Can also be used to restrict window usage
to "safe" windows so that the code cannot spool system dialog
boxes and ask for sensitive information such as passwords.

WWebPer m ssi on

Controls access to specific or all Internet resources (identified by
their URLS).

A CASdassisrequired to inherit from astandard class, Code Access- Per m ssi on (namespace
Syst em Secur i ty). Thisclass defines some standard methods to dedl with permissions. Aswe go through the

rest of this section, we will see many of these methodsiin action.

Demanding Permissions

Ingtead of relying on the underlying security-aware .NET class to throw a security exception, acomponent can
perform the security check directly. Class Code AccessPer mi ssi on definesamethod, Denand, that can be
cdled to explicitly request a specific permission. If the requested permission has not been granted to any of the cdlers
in the call stack, the method throwsa Secur i t yExcept i on. Thisisillusrated in the following code excerpt,
where method St or e explicitly requests the permissions to gppend to afile and, if permisson is not granted, tekes a

different action:

/'l Project

public class Foo {

Per m ssi on/ Securi t yChecks

public void StoreDemand(String s)({

320

String full Path = Pat h. Get Ful | Pat h(" Foo. | 0g");
CodeAccessPermi ssi on perm=
new Fi | el OPer m ssi on(Fi | el OPer m ssi onAccess. Append,
full Path);
try {
perm Demand(); // Request for the perm ssion
/1 Proceed with opening the file
}cat ch(SecurityException) {
Consol e. WiteLine("Not permtted to append to
file {0}", fullPath);

At this point, it is ussful to remember that even if the code clearsthe .NET Fi | el OPer m ssi on check, itisill
subject to the security check provided by the underlying OS. For example, if FOO. | 0g is marked as aread-only filg,
then the preceding code will throw aSy st em Unaut hor i zedAccessExcepti on.

Implied Permissions

Before we go further, it isimportant to understand that some permissions, when granted, imply others. For example, if
you are granted al accessto the directory C: \ Tenp, you areimplicitly granted al accessto its childrenin the

hierarchy (C: \ Tenp\ *. *, C.\ Tenp\ Foo\ *. *, C.\ Tenp\ Bar\ *. *, etc.).

To check if apermission isasubset of another permission, you can cadll thel sSubset OF method of
CodeAccessSecuri ty. Thisisillustrated in the following code excerpt.

/'l Project Perm ssions/SecurityChecks

public static void SubsetTest () {
CodeAccessPermi ssion pl = new Fi | el OPer m ssi on(
Fi | el OPer m ssi onAccess. Al | Access, @C.\ Tenp");
CodeAccessPer mi ssion p2 = new Fi | el OPer m ssi on(
Fi | el OPer m ssi onAccess. Append,
@C. \ Tenp\ Foo\ Bar. txt");
bool b = p2.1sSubset O (pl);
Consol e. Wi teLine(b);

This code, when executed, indicates that p2 isasubset of p1.

The presence of implied permissions makes it convenient to administer security policies. The common language
runtime automatically compares a demanded permission to seeif it is a subset of agranted permission.

Restricted Permissions

321

If an assembly isingtdled locally, it most likely will have wide-ranging or even completely unrestricted code access
permissions. Imagine if one of these highly trusted assemblies were to make a cal into an unknown, perhaps
untrustworthy, assembly.

Although the security policy islikely to ensure that the untrustworthy assembly is granted limited permissons, even

the calling assembly can restrict the effective permissions before making the cdl. CodeAccessSer vi ces
provides amethod, Deny, to place an extraredtriction in the current stack frame. It is aso possible to group a number
of permissions together as one set and deny the entire set. The collection of permissonsis represented by aclass

Per m ssi onSet . Thefallowing code excerpt illustrates the use of the Per mi ssi onSet object to deny access

to certain resources,

/'l Project Perm ssions/SecurityChecks

public static void DenyPerm ssions() {
Per m ssi onSet ps =
new Per m ssi onSet (Per m ssi onSt at e. None) ;
ps. AddPer m ssi on(new Envi r onnent Per m ssi on(
Perm ssionState. Unrestricted));
ps. AddPer m ssi on(new Ul Per m ssi on(
Per m ssi onSt at e. None)) ;
ps. AddPer mi ssi on(new Fi | el OPer m ssi on(
Fi | el OPer m ssi onAccess. Append,
Pat h. Get Ful | Pat h(" Foo.10g")));
ps. Deny();

Foo f = new Foo();
f.StoreDemand("Hello World!");

CodeAccessPer m ssi on. Revert Deny();

The code places extra restrictions on the current stack frame. Thismeansthat if Foo. St or e triesto accessany
environmenta variable, snesk apeek at the contents of the clipboard, or access the file Foo. | 0g, the operation will

fail. The restrictions are a so gpplicable to any other component that Foo. St or e triesto access.

Note that each stack frame can have at the most one permission set used for denid. If Deny iscdled twice, the
second call effectively overwritesthefirg.

When the method that caled Deny returns, the denia permission set is automatically removed from the current stack
frame. However, you can explicitly empty the denid permisson set yoursdlf by calling agtatic method,
CodeAccessPer mi ssi on. Revert Deny, asshown in the previous code.

If you find yoursalf denying lots of individua permissions, you might find it eesier to take a different gpproach:
indead of denying permissions, grant only specific permissions. Thisis done by caling the Per mi t Onl y method,

either onthe CodeAccessSecuri t y object or the Per mi ssi onSet object. Obvioudy, thisworks only if you

322

know exactly which permissions you'd like to dlow. Aswith the denid permission s, the permit-only permission set
isautomaticaly emptied when the cdler returns. However, you can aso cdl a static method,
CodeAccessPer m ssi on. Revert Perm t Onl vy, explicitly to revert back to the origind status.

Suppressing the Stack Walk

The stack-walking mechanism is greet for avoiding luring attacks like the one described earlier. However, it dso
creates a problem for trustworthy assemblies.

Imagine a class that is designed to provide service to other assemblies. Our FOO classisagood example. Its

St or eDenand method can be used to log errors at one centra place. As Foo isawdl-written class from atrusted
source, the security policy grantsit full accessto the locd file. Now consider the case when another assembly with
restricted permissions tries to invoke the St or e Denand method on Fo0. The stack-walking mechanism checksif
every cdler inthe chain hastherequisite Fi | el OPer mi ssi on. Asthe caling code does not have this permission,
it generatesaSecur i t yExcept i on, dthough Foo has been deemed safe for use by the security policy.

To ded with such cases, the security mechanism provides for the code to assert its own authority. The code can assert
the permissonsthet it needs by calling the method Asser t (availableon CodeAccessSecur ity and henceany

of its derivations). Thisisillugtrated in the following code excerpt:

/'l Project Perm ssions/Foo

public class Foo {
public void StoreAssert(String s){
String full Path = Pat h. Get Ful | Pat h(" Foo. | og");
CodeAccessPer m ssi on perm=
new Fi | el OPerm ssi on(Fi | el OPer m ssi onAccess. Append,
ful |l Path);
perm Assert ();

/1 Continue opening the file

Themethod St or eAssert assertsaFi | e- | Opermission before opening the file. Each stack frame hasthe
potential to have an asserted permission set. When the stack walk reaches the stack frame, it considers the asserted
permission satisfied. The stack walk won't continue further unless there are other permissions being demanded that
aren't satisfied by the asserted permission set.

Note that you can assert only those permissions that your assembly has been granted by the security policy.

Similar to denid and permit-only permisson sets, the asserted permission set is torn down when the calling method
returns. However, one can explicitly cal CodeAccessPer m ssi on. Revert Assert toempty the asserted

permission set.

323

At this point, it is worth mentioning that the ability to assert permissions can clearly be abused. For example, arogue
component can cal Foo. St or eAsser t and send very large strings to fill up the user's hard disk. So, even though
Foo isconsidered safe, attacks can till occur smply because of the assertion.

Do not just avoid using Asser t because of issueslike these. Instead, ask your peersto review any use of this
feature.

Oneingtance in which assertions are absolutely essentid is when invoking unmanaged code from the managed code.
Consider the system+-defined Fi | eSt r eamclass as an example. Clearly, this class needs to make cdlsto the
underlying OS (which isimplemented as unmanaged code) to open, close, reed, and write files. Theinterop layer
demandsaSecur i t yPer m ssi on (withflag Securi t yPer m ssi onFl ag. UnnmanagedCode) when
these calls are made. If this demand were to propagate up the stack, no code would be alowed to access files unless
aso granted permission to make calls into unmanaged code.

From a design standpoint, it isworth noting that Fi | e St r eamdoes not smply assert the UnmanagedCode
permission. It first ensures thet the cdlers have the permission for file | Oby demandingaFi | el OPer mi ssi onin
its congtructor. If this permission is not satisfied, the object itself can never be constructed.

Finaly, because assartion is a powerful facility with the potentid for abuse, its usageis dso governed by a
Securi tyPerm ssi on (withflag Securi t yPer m ssi onFl ag. Asserti on).

Permission Attributes

So far we have used the security actions (Denand, Deny, Per mi t Onl y, Asser t) programmatically. However, it
is dso possible to define these actions declaratively. Each of the code access permission classes that we listed in Table
9.1 has a corresponding atribute class. For example, Fi | el OPer mi ssi on has a corresponding attribute class,

Fi |l el OPerm ssionAttribute,andRegi stryPerm ssi on hasacorresponding attribute class,

Regi stryPerm ssionAttri bute.

The following code excerpt is a variation of our earlier defined method to gppend stringsto afile. Here,
Fi | el OPerm ssi onAttri but e isused to assart the file-gppend permission:

/1l Project Perm ssions/Foo

public class Foo {
[Fil el OPerm ssion(SecurityAction. Assert,
Append=@ C: \ Tenp\ Foo. | 0g")]
public void StoreAssert Ex(String s){
/'l proceed with opening the file and appendi ng
/'l the string. No explicit assertion needed.

324

The biggest advantage of defining security actions using atributes is that the attributes become part of the metadata
and thus can be discovered eesily via Reflection. Thiswould alow you, for example, to write atool that shows
various permissions required for your classes and methods.

The main drawback of this approach isthat it isimpossible for the method to catch an exception if the permission
being asserted or demanded is denied. This particular drawback applies only to asserting or demanding permissions.
Y ou will never have this problem if you are using declarative atributes to smply restrict permissions.

A second drawback of this approach is that arguments passed to the attribute should be known at compile time. For
example, in the preceding code, the absolute path name of the file has to be known at compile time. Congtructing the
path name at runtime, as we did in our earlier examples, is not an option.

The permission attribute classes teke the first parameter an enumeration of type Secur i t yAct i on. Table9.2
describes the options available on the enumeration, dong with the time at which the option is considered by the
runtime.

Table 9.2. SecurityAction Enumeration

Action Description Time of
Action

Li nkDermand Check demand only on the immediate caller. JIT
compilation

I nheri t anceDenand |Check demand on any derived class or an overridden method in the |Load time
derived class.

Denmand Check demand on all the callers in the call stack. Execution
time

Assert Check callers in the call stack only up to the point where the asserted Execution
permission is satisfied. time

Deny Deny a specific permission to successive calls in the current call [Execution
stack. time

PermtOnly Allow only specific permissions to successive classes in the current|Execution
call stack. time

Request M ni num The request for minimum permissions required for the code to run.|Grant time
This option can be used only at the assembly level.

Request Opt i onal The request for optional permissions. The code still executes if the|Grant time
requested permissions are not granted. This option can be used only
at the assembly level.

Request Ref use The request to deny specific permissions. This option can be used|Grant time

only at the assembly level.

Thelast three optionsin Table 9.2 are available only at the assembly level. We revisit these options | ater.

Evidence

325

The common language runtime grants permissions to an assembly based on the information it obtains about the
assembly. Thisinformation, caled evidence, includes items such as the origin or the author of the assembly.

The security policy gathers the evidence for an assembly in the form of the following questions:

From which site was this assembly obtained? An example of a ste is www.somecompany.com.

From which URL was this assembly obtained? An example of the URL is
www.somecompany.com/Demo/Foo.dll. An asterisk can be used as awildcard character a the end of the
URL, asin somecompany/Demo/*.

From what zone was this assembly obtained? .NET defines five zones. Internet, Local intranet, Trusted Sites,
Untrusted Sites, and My Computer. The first four zones are the same as those found under Internet Explorer.
The last zone represents the local computer.

Who isthe publisher of this assembly? Thisis obtained from the Authenticode digitd signature of the
assemhbly, if present.

Wha is the strong name of this assembly?

What is the hash vdue of this assembly?

What is the directory name of this assembly? The security policy can be configured such thet dl the
assembliesin the pecified directory or its child directory can be granted specific permissions.

The evidence is gathered either by the common language runtime itsdlf or the hosts of the common language runtime
such as ASP.NET and the shell host (which launches .NET applications from the shell). The evidence isthen
submitted to the common language runtime, which in turn grants proper permissons to the assembly.

It isworth noting that the host itsef must be trusted to not submit false evidence. Thisis the reason thet the hogt is
required to have a specia security permission, Cont r ol Evi dence. The common language runtime itsdlf is

nauraly trusted to provide evidence—after dl, it is trusted to grant proper permission.
Identity Permissions

g The NET Framework aso defines a different type of permission caled the identity permission.
— Identity permissions represent characteritics that identify an assembly. The common language
runtime grants identity permissions to an assembly based on the evidence provided by the
hosts. Some examples of identity permissonsare Si t el dent i t yPer m ssi on
(representing the Web site where the assembly originated) and
St rongNanel dent i t yPer m ssi on (representing the strong name of the assembly).

Identity permissions have a set of functiondity that is common with code access permissions.
For example, identity permissions can be asserted or can be demanded. In fact, identity
permissions inherit from the same base class as code access permissons,
CodeAccessPer i ssi on.

Let's now look at how the common language runtime grants code access permissions to an assembly.

326

Security Policy

Once the host and the common language runtime have gathered as much evidence as possible, they submit the
evidence to the common language runtime. Based on the evidence, the common language runtime grants permisson
to an assembly.

The exact permissions that are granted to an assembly are based on an entity on the loca machine called the security
policy. The security policy defines the mapping between the evidence of the assembly and the permissionsto be
granted to the assembly.

The NET Framework provides two tools to view and modify the security policy. The first tool is a command-line
program called the Code Access Security Policy Tool (caspol . exe). The second oneisaGUI tool called the NET
Framework Configuration tool (Ms Cor Cf g. s c). Choosing which tool to useisamatter of persona preference.

Both provide amilar functiondity, athough the GUI-based toal is a bit more user-friendly.
Figure 9.2 shows a sngpshot of the security policy from the NET Framework Configuration tool.

Figure 9.2. Security policy configuration.

% NET Framework Configuration
Ble Action Yew Help

N tn i Machine Policy £
-'3 Configured Sssemhies
. Remobng Services There are three configurable policy levels (enterpnse,
= Lgl Runbirs Sty Paley machine, and user) that tha security system usas to
v B Erverprice determine what permissions an assembly receives, Each
= | Machine policy level contains code groups, pemmission sets, and a
= g Coda Groups list of policy assermblies, all of which are configurable
- 4 Al Code using this toal.

¥ 4 My_Computer_Zors

+ 4 Locallriranet_Zone

The enterprize level is the highest, dascribing security

v g Inberret_Pore palicy for an antire entarpize. Belaw that, machine palicy
£ Rectriched_Tone applies ta all code run on that computer, User policy 15 a
+ &) Trusted_Zone third level that can be defined based on the currently
= L Permozem Sets logged-on user, When securty policy 15 evaluated,
FudliTruss entarprss, machine, and user levals are separately
L] Sipverification evaluated and Intersected - meaning that code s granted
g Exmoution tha minimum sat of permiscions granted by any of the
() hathing levels,
] Lesalikranct
L] Trterrst Expand this node to edit code groups, permission sats, or
[Everything tha list of palicy assemblias,
3 Poloy Asserbles
+ 13 User This secunty policy applias to this computer.
5 hoplcatiors

Ther membimir Lassml Bla - lommdmdd b

Asshownin Figure 9.2, the security policy can be configured a three levels.: enterprise, machine, and user. The
significance of these leves will become clear when we will discuss how the security policy is evauated againgt an
asembly.

The enterprise level describes the security policy for the entire enterprise. The security settings are stored in XML
format in thefile
<wi ndi r>\ M cr osof t. NET\ Fr anewor k\ v<CLRVer si on>\ confi g\ ent er pri sesec. confi g.

327

The machine level describes the security policy for dl the assemblies on the local machine. This XML file can be
found at
<wi ndi r >\ M cr osof t. NET\ Fr anewor k\ v<CLRVer si on>\ confi g\ security. config.

The user level describes the security policy for the user currently running the gpplication. This XML file can be found
a<UserProfile>\ Application Data\M crosoft\CLR Security
Confi g\ v<CLRVer si on>\security. config.

Not visble in Figure 9.2 is yet another level of security policy, the gpplication domain level. It is possible to
programmatically create apolicy level (represented by theclassPol i cyLevel) and st it on an gpplication domain
by caling the method AppDomai n. Set AppDomnai nPol i cy. The AppDomain policy level isoptiond and is
typicdly provided by the host.

Figure 9.2 dso shows that the security policy at a security level is composed of alinear list of objects called the
permission sets and a hierarchicd list of objects caled the code groups. Let's examine what they represent.

Permission Sets

A permission st isanamed set of permissions. Table 9.3 shows some standard permission sets under .NET.

Table 9.3. Built-In Permission Sets

Name Description

Not hi ng No permissions. Deny access to all the secure resources, including the right to
execute.

Executi on Permits execution.

Ful | Trust Unrestricted access to all the secure resources. Permissions in the set cannot be
modified.

Everyt hi ng Unrestricted access to all the secure resources. An administrator can change any

permission in the set.

I nt er net Default rights given to applications originating from the Internet.

Local I ntranet Default rights given to applications on the local intranet.

Ski pVeri fi cati on|Grants right to bypass the verification.

A permission set can contain any number of permissons. As an example, Table 9.4 lists permissons available in the
Local I ntranet permisson set.

Table 9.4. Local | nt r anet Permissions

Permission Access Allowed

Envi r onnment Per m ssi on Read only USERNAME variable
Fi | eDi al ogPer nm ssi on Unrestricted

| sol at edSt or ageFi | ePer m ssi on Isolated by user; fixed disk quota
Ref | ecti onPer m ssi on Reflection/Emit

328

Securi tyPer m ssion Assert granted permissions; enable code execution
Ul Perm ssi on Unrestricted

DnsPer m ssi on Unrestricted

PrintingPerm ssi on Default printer; safe printing through a dialog box
Event LogPer m ssi on Write to local event log

It isaso possble to define a custom permission set. The .NET Framework Configuration tool provides awizard to
help you create a permission s&t. Alternatively, you can create an XML file that defines the permission set and add it
tothepolicy using caspol . exe withthe- addpset switch. Check the SDK documentation for the format of the

XML file.

Code Groups

A code group maps specific evidence to a specific permission set. The evidence is represented as a membership
condition. The structure of the code group is shown in Figure 9.3. Here, Local | nt r anet _Zone isthe name of

the code group that represents the local intranet.

Figure 9.3. Code group.

Locallntranet Fone

Membership Condition :=
[Zone = Local Intranst)

Permission Set =
[local Intranet)

The code groups that are available on your machine can be seen from the NET Configuration tool (Figure 9.2), or you
canrun caspol . exe, asshown in the following command line

caspol . exe -a -Ilistgroups

In this command line, switch - a standsfor dl policy leves (if not specified, only the machine-level settings are
displayed) and the switch - | i st gr oups tellsthetodl to list the code groups.

Hereisthe partid output from caspol . exe:

1. Al code: Nothing
1.1. Zone - MyConputer: Full Trust
1.2. Zone - Intranet: Locallntranet
1.2.1. Al code: Sane site Wb.
1.2.2. Al code: Sane directory FilelO- Read
1.3. Zone - Internet: Internet
1.3.1. All code: Sane site Wb.

329

Notethat caspol . exe assignsanumber to each code group. This number is not actualy a part of the code group;
itisgenerated by caspol . exe asanidentity so that users can modify a code group using this identity.

At eech policy level, code groups are organized in a hierarchica fashion, asillugtrated in Figure 9.4. The common
language runtime takes the gathered evidence, matches it up to the nodesin the hierarchy, and ends up with a merged
ligt of permissions that can be granted to an assembly &t that policy level.

Figure 9.4. Code groups hierarchy.

Localintranet_Zone

Zone = local Inkonet

FE = locel Inkamel

v v v . v

Inte rmet_Tone My _Computer Tont | | Lecalintranet Tone Restriched_Tone Trusted_Zone
Toms o Iibid ad Zank = My Compitai Tane = loal lnkane Tans m Lkiliiiked S Lo = Tiwied Siles
S = lrbas fasl PL o Fidl T PE = lecal lakamai Poa N¢d1i.g P = [ddened

v ¥

Intranet_Same Sie Acois Intranot_Same_Dimdory Acxess
Cusiom Cusiom

Custom Cuytem

Mot FS = paomiidion sl

Figure 9.4 represents a partial snapshot of the default security policy a the machine level. The root code group,

Al'l _Code, matches any code (from anywhere). The code groups immediately under Al | Code, except for
My_Conput er _Zone, represent the zones that you see under Internet Explorer's zone settings.

My_Conput er _Zone matchesthe assemblies that are installed locally, perhgps using an ingalation program.
These assemblies are granted unrestricted code access permissions. Local | nt r anet _Zone matchesthe
assemblies downloaded from the local intranet, either over HTTP or from a shared network drive. These assemblies
are granted the right to use isolated storage, full user interface access, some reflection capability, and limited access to
the environment variables. | nt er net _Zone represents the assemblies downloaded over the Internet. These
assemblies are granted very limited permissions.

Identifying Intranet versus Internet Sites

The common language runtime uses Windows LAN Maneger APIsto identify if acomputer is

———
-
E part of anintranet or Internet. For example, if you use afully quaified domain name (FQDN)

as the machine name, the Siteis treated as an Internet site. Thisis true even if the machine
belongsto the local intranet.

If you plan to use the FQDN to identify a machine on the locd intranet, you may wish to add
the FQDN to the trusted zone under Internet Explorer.

330

Executing Internet-Downloaded Applications

SERE The firgt release of the NET Framework by default grants the permissionto execute code for

— | theasembliesinthel nt er net _Zone. Thisdlows, for example, use of thehr ef tagina
Web page to download an assembly (in the download cache) and execute it. However, itis
interesting to note that Service Pack 1 (SP1) for .NET has removed this permission as defaullt.
In fact, assembliesin the Internet zone have no permissions a all
(Per m ssi onSet =Not hi ng). This has been done to make your computer more secure.
Despite the fact that CAS provides atight security mechanism, hackers are bound to find some
security holes in the mechanism. After dl, it isthe first release of the CAS. Disabling code
execution for applications downloaded over the Internet reduces the chances of some rogue
gpplication hacking into your computer.

Starting with the SP1 release, to run an Internet downloaded assembly, you will need to
explicitly create a code group to match the assembly evidence, and give the code group the
permissons to execute. My recommendation is to use the publisher's digitd signature as the
membership condition as much as possible. This aso puts a pressure on the software vendors to
sgn their assemblies with adigitd signature.

Recdl that we have four levels of policy: enterprise, machine, user, and AppDomain. The evauation processto obtain
the merged list of permissonsis run at each policy leve. In thefind step, only those permissions that are common to
each policy level are sdected. Thisisthe find list of permissonsthat is granted to the assembly being evaduated.

For the purpose of policy evauation, the enterprise level gets the top priority, followed by machine, user, and
AppDomain levelsin that order. Lower level policies cannot increase permission granted at the higher levels.

However, lower level policies can decrease permissions. Furthermore, you can assignalevel Fi nal attributeto a
node. If this atribute is discovered on a matching node, no further policy levels are evaluated (except the AppDomain
level which is dways evauated). This dlows adminigtrators, for example, to define security settings at the machine
level that cannot be changed by individua users editing user-leve policy.

The bulk of the policy, by defaullt, is defined &t the machine level.

So far we haven't discussed why code groups are organized in a hierarchy. The hierarchica structure helpsthe
common language runtime prune down its search for the matching nodes. The traversing of the hierarchy is based on
two rules

1. A childnodeisvisted only if the parent node matches. In other words, if a node does not match, none of its
children are tested for matches.

2. If amatching node has been assigned an Excl usi ve atribute, only the permission set for that nodeis
used. Naturdly, it doesn't make sense for two matching nodesin apolicy level to have this attribute, and
therefore, is consdered an error.

331

The root node of the hierarchy, Al | _Code, isjust astarting point for the traversal. Hence, it matches dl code and by

default points to the permission set Not hi ng—a set containing no permissions.

To check the code groups an assembly belongs to, you can run caspol . exe withtheswitch - r esol vegr oup,
as shown in the following command line for our assembly Foo. dl | which was available over the locd intranet.

caspol . exe —-a

—resol vegroup http://1ocal host/ SecurityDeno/ Foo. di

Alternatively, you can obtain the same information from the .NET Configuration tool. Select Evauate Assembly
menu item from the Runtime Security Policy context menu. A security wizard pops up that helps you evaduate the

meatching code groups. Figure 9.5 shows a snapshot of the output.

Once you have the ligt of matching code groups, you can figure out the final set of permissions that can be granted to

the assembly.

Better till, you can just sdlect an option in the security wizard to give you thefina set of permissons. Figure 9.6

Figure 9.5. Resolving code groups.

Evaluate an Assembly EI

Lizt of Code Groups
Thee wiraed b detarmired the code quoupe 1hat wil grant peimissons tn e
asembl.

SAzeerchly evvaliisted: hitp: [flocathost SanurityDemoiFoo.ol
Lol ey ababed: Al Levals
Code groups that apply o this assembly:

Rl
Al Code

- L& Hachine Polcy
= 4 Al Cods
= 4) Locallrtranet_Tons
£ Inteanet_Same_SRe_RAocess
(} Intranet_Same_Dwcctory_Access
-} User Polcy
€ al_Code

| « Back][Firuzh][Cancel]

shows a sngpshot of such an output.

Figure 9.6. Permissions granted to Foo. dl | .

332

Evaluate an Assembly

X

Lizt of Permiszions Granted

Thiz wizard haz determined the zet of permizzions that will be granted to the
azzembly,

Assembly evaluated: http:fflocalhost/SecurityDemofFoo, d
Level evaluated: all Levels

Permissions granted to this assembily:

@ Ervironment Yariables
_‘-ﬂ File Dialag

_‘J-‘l] Isolated Storage File
] Reflection

ﬁ] Securiky

ﬁ] User Interface

%] DMS

2'] Prirking

ill Event Log

@ Web Access

To view the details of a permission, select the permission Visiy Parmission |
and click Yiew Permission,

¢ Back][Finizh][Cancel]

As can be seen from Figure 9.6, our Foo. dl | assembly that was downloaded from the local intranet does not have
Fi | el OPer m ssi on. Now you know why our experiment failed.

As an exercise, run the security wizard once again. Thistime, however, specify the complete path to Foo. dI | onthe
locd disk. The assembly will then be seen as having unrestricted permissons.

Youcandsousecaspol . exe toresolvethe set of granted permissions using theswitch - r esol veper m Thisis
illugtrated in the following command line:

caspol .exe -a
-resol veperm http://l ocal host/ SecurityDeno/ Foo. dl |

An interesting aspect of using caspol . exe to resolve the code access permissionsiis thet it also shows the idertity
permissions that have been granted to the assembly.

Hereis an interesting question: If you trust the source of an assembly, how can you set the security policy so that the
necessary permissions are granted to the assembly, even if the assembly is downloaded from the Internet? What you
arethinking is absolutely right; just create a new code group with an appropriate membership condition and a proper
permission set.

The smplest way to create a code group is by using the NET Configuration tool.

333

For Foo. dlI | , the requisite permission was not granted by the security policy a the machine level (the enterprise
level and the user level grant Ful | Tr ust to any code by default). Therefore, it makes sense to add the code group
a the machine level. Defining code groups at the machine leve isthe most likely scenario for any downloaded
assembly.

Naturaly, the code group node has to be created only under amatching node. Otherwise, it will never be traversed.
However, the decision to pick a parent becomes difficult when there are many matching nodes. For example, as seen

in Figure 9.5, some of the matching code groups for http://localhost/SecurityDemo/Foo.dll are Al | _ Code and
Local I ntranet _Zone. For such cases, sdlecting a parent depends on what your fina godl is. Y ou can create a
code group under Local | nt r anet _Zone and add the permission set thet grantsFi | el OPer mi ssi on.
Remember that this permission set will be merged with the permission set of the parent node,

Local I ntranet Zone. Or, you can create a code group under the Al | _ Code node and define all the necessary

permissions that are needed by the assembly.

Sometimes choosing a proper parent for the code group aso depends on the membership condition specified on the
code group. For Foo. dl |, for example, the membership condition can be either the URL of the source or the strong
name of the assembly. There is an advantage of using the strong name as the membership condition and creeting the
code group directly under Al | _Code. The permissions granted to the assembly will be the same irrespective of
whether the assembly comes from the local computer, intranet, or the Internet. If you use just the public key for the
grong name (assembly name and version are optiond), then any assembly matching the public key will be granted the
same permissions. Generaly, assemblies coming from the same publisher tend to have the same public key.

The recommended way to define the membership condition is by using the publisher's credentials. By doing so, we
show our leve of trust for the publisher, not the specific assemblies, which generaly istrue. Obvioudy, to usethe
publisher's credentids as the membership condition, the assembly hasto be signed with a digitd certificate.

It isleft as an exercise for you to define an appropriate code group for Foo. dl | and obtain thefind list of granted
permissions by running the assambly evauation wizard. Hint: Use the public key for Foo. dI | for the match.

Modify the Security Policy Cautiously

¢ Donot blindly add Web sites to the trusted zone. Instead, define newer code groups using

: ether the public key of the assembly or the publisher's credentids.

Note that when you try to resolve either the code group or the code access permissons againgt a URL, the assembly
pointed to by the URL is downloaded and ingtalled in the user's download cache (recall from Chapter 3 that each user
has a different download cache). Also note that, besides the strong name, each downloaded assembly is further
identified by its evidence. For example, if you download the same Foo. dl | from two different URLS, you will see
two assemblies in the download cache with the same name, version, and public key token. As amatter of fact, the
fallowing three commands produce three entries in the download cache, despite the fact that al the commands are

334

accessing the same assembly from the same machine. Here, ny dev isthe name of my loca machine and
mydev. myconpany. net isits FQDN.

caspol . exe —resol veperm http://1 ocal host/ SecurityDeno/ Foo. dl |

caspol . exe —resol veperm http://nydev/ SecurityDeno/ Foo. dl |

caspol . exe —resol veperm
htt p:// nydev. nyconpany. net/ Securi t yDeno/ Foo. dl |

It isinteresting to note that the permission set returned for the third command isthat of the Internet. Asthe machine
name is specified as an FQDN, the runtime by default assumes that the machineis part of the Internet.

If you want the machine with an FQDN to be treated as part of the intranet, then add the FQDN to the intranet site
from the Internet Explorer.

Findly, it is worth mentioning that a code group is represented by an abstract base class cdled CodeGr oup. Itis
possible to create anew class by inheriting from Code G- oup to represent a code group that programmaticaly
returns the name of the permission set. The membership condition for the code group can aso be specified by
implementing a class that implements a standard interface, | Menber shi pCondi ti on.

Requesting Permissions

Once the common language runtime builds the list of permissions that can be granted to an assembly from the three
policy levels, afind step dlows the assembly itsdf to dictate the permissions that it needs or doesn't need.

Recdl from Table 9.2 that the Secur i t yAct i on enumeration provides three actions that can be applied at the
asembly leved: Securit yAction . Request M ni mum SecurityActi on. Request Opti onal , and
Securi tyAction. Request Ref use.

Request M ni mumis used to define the minimum set of permissions requested by the assembly. If these
permissions are not granted by the security policy, the assembly won't run. The following are two common examples
that show how an assembly-levd attribute can be defined that uses this security action:

/1 Project Perm ssions/Foo

[assenbl y: SecurityPerm ssi onAttri bute(
SecurityAction. Request M ni num
Fl ags = SecurityPerm ssi onFl ag. UnmanagedCode)]

[assenbl y: SecurityPerm ssi onAttri bute(
SecurityAction. Request M ni num

Fl ags = SecurityPerm ssi onFl ag. Ski pVerification)]

Thefirst exampleis useful if your assembly intends to make calls into the unmanaged code. The second exampleis
useful if your assembly contains unsafe code and you don't want the common language runtime to verify your code

335

for type safety. If the requested permissions cannot be granted to the assembly, the common language runtime ensures
that the assembly does not get loaded at all.

Note that these examples represent the common cases of requesting assembly-level permission attributes.
Assembly-leve permission attributes by no means are limited just to Secur i t yPer mi ssi onAttri but e;any
code access permission attribute can be used.

Requesting the minimum permissions your code requires ensures that it either receives those permissions or does not
run. By requesting minimum permissons, you don't have to worry that your code will crash in some unexpected way
because it was not granted a permission it absolutely needed to function. Also, by doing the work up front to
determine what permissions your code requires, you make it easier on users and adminigtrators. The .NET Framework
provides atool caled the Permission Request Viewer (Per nVi ew. exe) that you can run on an assembly to see
what permissions the assembly requires. For example, systems administrators can determine if your code will run

from anetwork share under their current corporate policy or whether they need to modify the policy to grant extra
rights to your code.

Be careful about how you use this security action. For instance, if you ask for dl the permissions your assembly might
need, the assembly would fail to load in more circumstances than might be necessary. Moreover, thismay lead an
adminigrator to loosen up his or her security policy more than necessary to alow your assembly to run.

Request Ref use dlowsyou to smply deny yoursdf permissions that you might have been granted by the security
palicy. It isgood programming advice to refuse the permissions that you know your assembly doesn't need. It
certainly cannot hurt to play it ssfe.

Request Opt i onal dlowsyou to specify optiond permissions. Y our assembly can use these permissionsiif
granted. If not granted, your assembly is gtill expected to handle the Stuation gracefully and continue to execute.

Findly, instead of requesting individua permissions, you can dso request any of the following built-in permission

sts Not hi ng, Executi on, Ful | Trust, | nternet,Local | ntranet,andSki pVerificati on.

Thisisdoneusingthe Per m ssi onSet At t ri but e dasswith the Nane property representing the permission
o, asillugrated in the following code excerpt:

[assenbl y: Perm ssi onSet Attri but e(
Securi tyAction. Request M ni num
Nanme = "Local I ntranet")]

Note that you can request only those permission sets that do not change from system to system. This meansthat you
cannot request custom-named permission sets or the Ever yt hi ng built-in permission set (which is modifiable).

This concludes our discussion on CAS. Interested readers may wish to read [Bro-014] for an excellent introduction to
CAS.

Role-Based Security

336

Many gpplications require that different users be grouped based on the privileges they have. Typicaly, these
applications check the group, or role, of auser and provide access to the resources based on the role. For example, an
employee salary management gpplication may provide access to employee sdaries only if the current user belongsto
the Manager role. Even Windows NT (Windows 2000 and all subsequent versions are based on Windows NT
technology) was built with arole-based security architecture: It grants or denies access to secured resources based on
theloca group to which auser belongs. A Windows NT user that belongs to the Administrators role has complete and
unrestricted access to the computer, whereas a user that belongs to the Guests account has limited access to the
computer.

Users and Roles

Under the NET security mode, the identity of auser isencapsulated in aninterface, | | dent i t y, and therole of
the user isencapsulated in aninterface, | Pr i nci pal . Both these interfaces, and most other types discussed in this
section, can be found under the namespace Syst em Securi ty. Pri nci pal . Here are the definitions of these
interfaces:

interface Ildentity {
string Nane { get; }
bool |sAuthenticated {get; }
string AuthenticationType {get; }

interface | Principal {
Ildentity Identity {get; }
bool IsInRole(string role);

Interface| | dent i ty providesthe name of the user and the authentication information. Authentication isthe
process of verifying if a user iswho he or she dlaimsto be. The commonly used authentication mechanisms are basic,
digest, Microsoft Passport, NTLM, and Kerberos. The latter two mechanisms are provided by the Windows OS.

Theinteface| Pri nci pal encapsulates the identity of the user dong with the roles the user may belong to. You
canusethel sl nRol e method to check if the user belongs to a specific role. Thereis no direct way to obtain alist

of therolesauser beongsto.

Note the complete lack of reliance on the Windows security model in defining these interfaces. The .NET security
mode makesit possible to use any standard authentication mechanism. Y ou can even create your own authentication
mechanism by implementing these two interfaces and ill take advantage of the NET security infrastructure.

To be clear, these interfaces do not let you authenticate a user. Rather, they represent the result of the authentication.
During the steady state operation of your application, these interfaces indicate whether the request is anonymous or
has been authenticated.

The .NET Framework comes standard with afew identity providers, aslisted in Table 9.5. The table dso showsthe
associated principd dass, if any.

337

Table 9.5. Standard Identity Providers

Identity Class Principal Class Description

Genericldentity CGeneri cPrinci pal |Represents a generic user
(System Security. Principal)

W ndowsl| dentity W ndowsPri nci pal |Represents a Windows user
(System Security. Principal)

Passportldentity Represents a Passport identity
(System Web. Security)

Fornsldentity (System Web. Security) Represents an identity based on
forms authentication

Here is acode excerpt from a program that displays the identity information of the Windows user currently running
the application:

/1 Project RoleBasedSecurity/WioAm
public static void WndowsUserDeno() ({
Ildentity id = Wndowsldentity. GetCurrent();

Consol e. Wit eLi ne(" Name={ 0}\ nAut hent i cat ed={ 1} \ nType={2}",
i d. Name, id.lsAuthenticated, id.AuthenticationType);

Hereis the output of the program when executed under the Windows account ny guest on the machine MYDEV:

Nane=MYDEW nyguest
Aut hent i cat ed=Tr ue
Type=NTLM

If you are interested in just the name of the user running the application, you can aso use two static methods,
User Dorrai nNane and User Nane, from theclass Syst em Envi r onnent , as shown in the following code

excerpt:
/1 Project Rol eBasedSecurity/\WoAm

public static void WndowsUserDeno() ({

/1 Second met hod (using System Environnent)
Consol e. Wi teLine("Nanme: {O}\\{1}",

Syst em Envi ronnent . User Donai nNane,

Syst em Envi ronnent . User Nane) ;

338

At this point, it isworth understanding a little about the security mechanism provided by the underlying OS, Windows
NT.

Under Windows NT, there are two types of security contexts one of the process and another of the thread. The process
under which an application is running has the security context of the user (principa) who was responsible for

executing the application. Any thread crested within the process does not have a security context associated with it by
default. However, the executing code can obtain the security context of auser (not necessarily the same user asthat of
the process) and associate the current thread with this security context. The thread is said to be under impersonation.

At some later stage, the code can remove the security context from the current thread.

For those interested in the Win32 API's, the security context of auser can be obtained by caling the Win32 API
LogonUser and passng the name and password of the user. The Win32 API to impersonate a user is
| nper sonat eLoggedOnUser and to remove the impersonation tokenisRever t ToSel f .

Note that the OS-provided security context for auser is d o referred to as the security token or smply token.

Virtudly any Windows AP that does any access check (e.g., Cr eat eFi | e) usesthe security token of the current
thread if the thread is under impersonation. Otherwise, the AP uses the security token of the process.

In our earlier example, W ndows| dent i ty. Current (thesame holdstrue for

Syst em Envi r onnent . User Nane) returns the identification of the Windows principa associated with the OS
thread that executed the method. If the OS thread is not under impersonation, then the method returns the

identification of the principal under which the processis running.

Managed Thread Principal

Similar to Windows NT, where a thread within a process can be associated with a security principa, NET aso
supports the notion of associating a security principa with a managed thread within an AppDomain.

The principa under which the current managed thread is executing can be obtained by calling a satic method,
Thread. Current Pri nci pal .

Thetype of principal to be used a the thread level is dictated by the principa policy that is set on the AppDomain
under which the thread is currently executing. The principa policy is represented by an enumeration of type
Pri nci pal Pol i cy. Table 9.6 describes possible enumeration valuesfor Pr i nci pal Pol i cy.

Table 9.6. PrincipalPolicy Enumeration

Value Description

NoPri nci pal No principal should be associated with the thread.

Unaut hent i cat edPri nci pal |Create a principal of type Generi cl dent i t y. By default, the name is

set to an empty string and the authentication flag is set to false.

W ndowsl| dentity Use the Windows identity for executing the thread.

339

By default, the principa policy for the AppDomainis set to Unaut hent i cat edPr i nci pal . However, you can
change the principal policy by cdlingthe Set Pr i nci pal Pol i ¢y method on the AppDomain. Thisisillustrated

in the following code excerpt:

/1 Project Rol eBasedSecurity/\WoAm

public static void ThreadPrinci pal Deno() {
AppDonmai n. Curr ent Donai n. Set Pri nci pal Pol i cy(
Princi pal Pol i cy. WndowsPri nci pal);

I Principal pr = Thread. CurrentPrinci pal ;
Consol e. WitelLine(pr.ldentity. Nane);

Thread Principal and Remoting

g Inthe first version of the .NET Framework, the thread principal is not carried to aremote

— | object. However, if it is desired that you pass the identity information, you can use the call
context (Chapter 6) to store such information. The SDK includes a sample program under
Samples\TechnologiesRemoating thet illustrates this.

It isaso possible to explicitly assign aprincipa to athread. The SDK includes an example that shows how to cregte a
new generic principa and afew genericroles(using Generi cl dent ity andGeneri cPri nci pal classes),
and assign the principal to the thread. Here, | present an example that usss W ndows| dent i t y. Thisexampleisa
bit complex in that to create anew W ndows| dent i t y object, first the security token of the user account has to be
obtained by cdlingaWin32 API, LogonUser . Once the security token is no longer needed, it has to be closed by
calling another Win32 API, Cl oseHandl| e. Both the APIs are encapsulated as imported functionsin adass

W n32, as shown here:

/1 Project Rol eBasedSecurity/WhoAm

public class Wn32 {
/'l 1 ogon type
public static readonly U nt32 LOGON32_LOGON | NTERACTI VE=2;

/1 1 ogon provider
public static readonly U nt32 LOGON32 PROVI DER DEFAULT = O;

[Dl1nport("AdvApi 32. D | ", SetlLastError=true)]
public static extern bool LogonUser (

String user Nane,

String domain,

340

String password,

U nt 32 | ogonType,

Ul nt 32 | ogonPr ovi der,
out IntPtr token);

[Dllnport("Kernel 32.D1")]
public static extern void C oseHandl e(IntPtr token);

Hereisthe code that creates a Windows user principa and assignsit to the current thread:

/'l Project RoleBasedSecurity/WioAm
public static void ThreadPrinci pal Deno() ({

/] Step 1: Get user token

IntPtr token;

bool b = Wn32. LogonUser ("nyguest", "", "nypassword",
W n32. LOGON32_LOGON | NTERACTI VE,
W n32. LOGON32_PROVI DER DEFAULT, out token);

Il Step 2: Create a Wndows identity and princi pal
W ndowsl dentity newl dentity =
new W ndowsl dentity(token);

W ndowsPrinci pal prl = new WndowsPrinci pal (new dentity);

/'l Step 3: Change the current principal
Thread. Current Princi pal = pr1;
DunpPri nci pal s();

/]l Step 4: Once done, close the user token
W n32. C oseHandl e(t oken) ;

Hereistheimplementation of DunpPr i nci pal s:

public static void DunpPrincipal s() {
Consol e. WiteLine("\nPrincipals frommanaged APIs:");
Consol e. WiteLine("Wn32 Thread (or Process): {0}\\{1}",
Syst em Envi ronnent . User Dormai nNane,
Syst em Envi ronnent . User Nang) ;
Consol e. Wit eLi ne("Managed thread: {0}",
Thread. Current Principal .l dentity. Nane);

341

String processUser, threadUser;
W n32. Get Princi pal s(out processUser, out threadUser);

Consol e. WiteLine("\nPrincipals fromunnmanaged APIs:");
Consol e. WitelLine("Wn32 Process: {0}", processUser);
Consol e. WitelLine("Wn32 Thread: {0}", threadUser);

W n32. Get Pri nci pal s isanimported method thet isimplementedin DunpPr i nci pal . dl | . It returnsthe
names of the principals associated with the current OS process and the current OS thread. If the current OS thread is
not under impersonation, an empty string is returned. The source code for this DLL can be found on the companion
Web site under the project Rol eBasedSecur i t y\ DunpPri nci pal .

At this point, it is worth mentioning that the ability to replace principa objects opens up a security hole. Some
malicious code can clam an untrue identity or role. For this reason, gpplications that require changing the identity
must be granted the code access permission Secur i t yPer m ssi on tha hasthe Cont r ol Pri nci pal

enumeration value gpplied to it.
Impersonation

Recdl that the security infrastructure provided by the common language runtime is completely separate from that of

the underlying OS. If you are running on an OS based on Windows NT, you will have processes and threads that have
user tokens attached to them. Y ou will be subjected to the security policy of the OS when you perform operations on
security objects such as NTFSfiles.

However, when you are running on Windows 98 or Windows CE, there is no security infrastructure on these systems.
Y ou can open any filetha you like. Note, however, that the CAS aswell as the role-based security gill exist on these
platforms. They continue to function because they are abstracted from the underlying OS.

This abstraction means you need to pay attention to two security contexts on secure OSs, the one of the managed code
and the one of the underlying OS.

Hereisthe output from running Thr eadPr i nci pal Deno from our previous example

Principal s from nanaged APIs:
W n32 Thread (or Process): MYDEW pradeep
Managed t hread: MYDEW nyguest

Princi pal s from unnmanaged APIs:
W n32 Process: MYDEW pradeep
Wn32 Thread:

Note from the output that athough the managed thread is associated with a principd, it does not imply thet the

underlying physical thread is under impersonation. These are two orthogonal concepts. Each can be customized
independent of the other. Moreover, the managed thread can be associated withaGener i cPri nci pal , whereas

342

the underlying physical thread (and process) will always have a Windows principd (if the OS is based on Windows
NT).

With Windows NT, when the managed code makes acall into the unmanaged world, the security context of the
managed threed is not automatically mapped to the security context of the physical thread. The implication of thisis
that the unmanaged code will use the security context of the process to perform any security access checks.

If the security context from the managed thread needs to be mapped to the security context of the unmanaged threed,
it has to be done explicitly by caling the method W ndows| dent i t y. | nper sonat e. Thisisillugrated in the

following code excerpt:

/1 Project RoleBasedSecurity/WioAm

public static void |InpersonationDeno() {

/] Step 1: Get user token

IntPtr token;

bool b = Wn32. LogonUser ("nyguest", "", "nypassword",
W n32. LOGON32_LOGON_NETWORK_CLEARTEXT,
W n32. LOGON32_PROVI DER _DEFAULT, out token);

/] Step 2: Create a Wndows identity
W ndowsl dentity id = new W ndowsl dentity(token);

/1 Step 3: |npersonate.
/] Store the original security context away
W ndows| nper sonati onCont ext ctx = id. | npersonate();

Consol e. WiteLine("lnpersonation on...");
| Principal pr = Thread. Current Princi pal ;
Consol e. WiteLine(pr.ldentity. Nane);

/] Step 4: Revert to the ol d user context
ct x. Undo();

/1 Step 5: dose the Wn32 handl e
W n32. d oseHandl e(t oken) ;

Once impersonation is no longer needed, it isagood ideato restore the original user's security context.
W ndowsl| dent i ty. | nper sonat e returnsthe origina context as an object of type
W ndows| nper sonat i onCont ext . Caling the method Undo on this object causes the thread to revert to the

old user context.

For those who are curious, hereis the output from running | nper sonat i onDeno:

Principal s from nanaged APIs:
Wn32 Thread (or Process): MYDEW nyguest
Managed t hread:

Princi pal s from unnmanaged APIs:
W n32 Process: MYDEW pradeept
W n32 Thread: MYDEW nyguest

Role-Based Security Checks

Once the authentication mechanism has been defined and the roles have been identified for your application, it istime
for you to add security checks in your code to determine if a particular principal object isamember of aknown role.
Youcandothisby cdling | s| nRol e onthel Pri nci pal interface. The following code excerpt illugtrates this:

public static void DirectRol eCheck() {
I Principal pr = Thread. CurrentPrinci pal ;
bool b = pr.IslInRole(@BU LTIN Adm ni strators");
if (!'b) {

throw new Exception("Only adm nistrators all owed!");

Consol e. WiteLine("Ckay to proceed...");

The method checksiif the Windows principa associated with the current thread is part of the local adminigtrative
group. If not, the method throws an exception. Any security-sensitive code can be placed after the code that doesthis
check.

For the built-in user groups under Windows, it is dso possible to use a .NET- defined standard enumeration,
W ndowsBui | t | nRol e. Using this enumeration, the preceding implementation can be revised as fallows.

public static void DirectRol eCheckBuiltin() {
W ndowsPri nci pal pr =
(W ndowsPrinci pal) Thread. CurrentPrinci pal ;
b = pr.IslnRol e(WndowsBui |l t1nRol e. Adm ni strator);
if (!'b) {

throw new Exception("Only adm nistrators all owed!");

Consol e. WiteLine("Ckay to proceed...");

Removing the hard-coded string for the role makes the code safe from locdization issues.

Note that this code assumes that the AppDomain security policy isset to use W ndowsPr i nci pal .
Debugging Windows Identities

L If you are planning to use Windows identities in your gpplication, then using Windows 2000 or

- -

alater OS may smplify testing your gpplication under various user accounts. The OS provides
autility, r unas. exe, that can be used to execute an gpplication under a specific user

- b

account. Y ou can even spawn a command window that runs under a different user account, as
shown here:

runas. exe /user: MYDOVAI N\ account cnd. exe

When executed, r unas. exe prompts you for the user's password.

The technique of explicitly checking the role is perfectly fine and is necessary in many cases. However, it turns out

that the role-based security model follows the footsteps of the CAS model. The role-based security modd definesa
permission object, Pr i nci pal Per m ssi on, that issmilar in functiondity to the code access permission objects.
For example, Pri nci pal Per m ssi on can be demanded at runtime to check if the current principal matches the
specified user and role.

The congtructor of the Pr i nci pal Per m ssi on object tekes two parameters. The first parameter isa string that
represents the user to be matched. Passing the nul | identity string indicates thet the identity of the principa can be
anything. The second parameter is a string that represents the role to be matched. Passinganul | role string indicates
that the principa can be a member of any role.

Note that it is possible to combine multiple Pr i nci pal Per mi ssi on objectsinto one object by calling the
Uni on method on one object repeatedly for each of the other objects.

UsngthePri nci pal Per m ssi on object issimilar to using the CAS permission object; you can useit either
imperdtively or declaratively.

Imperative Role Checks

UsngthePri nci pal Per m ssi on dass, our earlier role check code can be written dightly different. The
following is the revised code excerpt:

public static void InperativeRol eCheck() {
Pri nci pal Perm ssion perm=
new
Princi pal Perm ssion(null, @BU LTI N\ Admi ni strators");
per m Denmand() ;

Consol e. WiteLine("Ckay to proceed...");

Theresult is the same basic behavior as the earlier implementation. If the principa associated with the current threed
isnotinthe Adm ni st r at or s role, asecurity exception will be thrown. Any security-sensitive code can be placed

after the call to Dermaind. This sensitive code is executed only if the principa permission Denand succeeds.

Declarative Role Checks

Much dong the lines of CAS, the role-based security mechanism defines an attribute,
Princi pal Perm ssi onAttri but e, that can be used declaratively to perform the role check. The following

code excerpt is yet another revison of our earlier implementation:

[Princi pal Perm ssi on(SecurityAction. Demand,
Rol e=@ BUI LTI N\ Admi ni strators")]
public static void DeclarativeRol eCheck() {

Consol e. WitelLine("COkay to proceed...");

In this case, the common language runtime demands that the principa associated with the current threed isin the
Adminigtrators role and will generate an exception if the demand is not satisfied.

Notethat Pri nci pal Perm ssi onAttri but e isnot acontext atribute. This makesit possible to apply this
attribute to any object, context-bound or not.

An advantage of the declarative role check is that you can smply gpply it to an entire class ingtead of each individud
method. Another advantage is that you can use Reflection to read the principa permission attribute from an assembly.
This should make it easy to generate documentation for your classes, including which roles are allowed access to
which classes and methods.

This completes our discussion on role-based security under .NET. In the next chapter, we will look a another
role-based security mechanism that is actudly apart of COM+ services but is available to .NET applications.

ASP.NET Web Services Security

Security is an important issue for many Web sites, whether they are serving Web pages or running Web services. This
is especidly trueif the Web steis exposed on the Internet. The site might contain sengitive data tht, in the wrong
hands, could cause substantia damage to the company or the individuas. Such a ste may wish to dlow only specific
usersto be able to access the site. The site may wish to authenticate the user; that is, verify the user isthe one he or
she dlamsto be. The site might want to implement some kind of authorization such as role-based security so that

users get redtricted access to the data, based on their privileges. Finaly, under some circumstances, the executing code
might wish to impersonate the user so that certain secured objects at the OS level can be accessed.

346

In this section we examine how ASP.NET provides support for handling these security issues. Although our focus will
be from the Web services perspective, the same principles are gpplicable if you are serving Web pages using any
server-side code.

Before we go further, it isimportant to understand how ASP.NET applications are hosted under 11S and the security
context under which the ASP.NET applications run.

Hosting ASP.NET under IIS
Figure 9.7 illustrates how ASP.NET applications are executed under 11S.

Figure 9.7. Hosting ASP.NET Applications under IIS.

Inetinfo.exe AspNet Wp.exe

Applomain

Assemblies and
Compiles Poges

HTTP Request Mamed Pipe »

= aspnet_isapidll

AppLomain

Assemblies and I-
Compiles Poges

Under IIS, any HTTP request to ASP.NET filessuchas. asnx, . aspx, and so on, ishandled by an ISAPI DLL

cdledaspnet i sapi.dl|.ThisISAPI DLL adwaysrunsinsidethe core IS server process, | net | nf 0. exe.

The DLL doesn't do much except to forward incoming requests to an ASP.NET worker process called
aspnet _wp. exe over anamed pipe. The ASP.NET worker processis automatically created if it doesn't exist.

The ASP.NET worker process hosts your ASP.NET code. It compiles your server-side pages as need be and executes

your code, loading whatever assemblies are necessary.

No matter how many ASP.NET applications you are running on your system, al are hosted in just one ASP.NET
worker process. To provide isolation between the applications, each application is run under a separate AppDomain.

ASP.NET Changes in IIS 6.0

_...._1 1S 6.0 is currently dated to be released aong with Windows .NET Server. Under 1S 6.0,

—— |F aspnet _wp. exe doesnot exist. Instead, |1S provides the worker processes for ASP.NET as

well as other gpplications. At the time of thiswriting, Microsoft plans to connect
I net i nf 0. exe totheworker processes using local procedure calls (LPCs) instead of
named pipes.

347

By default, aspnet _wp. exe runsunder an account name ASPNET. Thisis alow-privileged user account that is
created at thetime of .NET Framework installation.

Although running the ASP.NET worker process under alow- privileged account is desirable from a security
perspective, it is possble to configureaspnet _wp. exe to run under adifferent account. Thisis done by
modifying the <pr ocessMbdel > XML dement inthe globa configuration file, Machi ne. conf i g. This
element is used to define various process settings by means of XML attributes. These ettributes are well-documented
in the SDK. A limited explanation of these attributes is dso available in the configuration file.

The two attributes that are important to usareuser nane and passwor d. The default settings for these two
attributes are:

user Name="rachi ne" passwor d="Aut oGener at e"

Thissetting causesaspnet _wp. exe to run under the ASPNET account.

Torunaspnet _wp. exe under thelocad SYSTEM account, which is a high-privileged administrator account, you
can define the settings as follows:

user Nanme="SYSTEM' passwor d=" Aut oGener at e"

User namesnachi ne and SYSTEMare special tokensthat ASP.NET is aware of. The password value of
Aut oGener at e can be gpplied only to these two accounts, diminating the need to enter the actua passwords.

Torunaspnet _wp. exe under aspecific account, you can specify an explicit user name and password, as shown

here:
user Name="j ay" passwor d="j ayspassword"

Be awarethat Machi ne. conf i g isreadable by anyone who has physical access to the machine. Y ou might have
to take extra precautions to secure access to the machine.

This concludes the short introduction to how ASP.NET applications are hosted and executed. Interested readers can
read [Bro-01b] for more details.

Authentication

Authentication is the process of accepting credentids from a user and vaidating those credentials againgt a designated
authority. The dlient must provide credentials to alow the server to verify the client's identity.

In the case of ASP.NET, the clients have to go through two different authentication checks. The first-level
authentication is done by 11S and the second-level authentication is done by ASP.NET.

IIS Authentication

11S offers four basic modes of authentication:

Anonymous access

Integrated Windows authentication
Basic authentication

Digest authentication

A w P

An 1S virtua directory can be set to use one or more of these authentication modes. A sngpshot of the Authentication
Methods dialog box is shown in Figure 9.8.

Figure 9.8. Authentication Methods under IIS.

Authentication Methods FEJ
Anonymous access

Mo user name/password required lo access this resource.
Account used for anonymous access:

User name: |IUSR_MYDEM]

Password:

sscRORERDD

Allow |15 to control password

Authenticated access
For the followang authentication methods, user name and password
are required when

* BNONYMOLE ACCE3E iz disabled, or

- access is resticted using NTFS access contiol lists

Hampm e sebnimbe i o Wb Fiam af o o ol i o e n
= R | Ao S QoAb Serveal

[] Basic authentication [password iz sent in clear text)
Default domain; | & ehact

T

Integrated Windows authentication

Lok] [Caed | [Heb |

The client code has to provide proper credentialsto 1S to clear the authentication check. Let's see how this can be
donein the client code for each of the four modes.

For our experiment, we use the following Web service class (cresting Web services was discussed in Chapter 6):

/1 Project WebSecurity. File M/Test.asnx

<%@ \\ebSer vi ce Language="C#" d ass="M/Conpany. \yTest" %

[WebSer vi ce(Nanmespace="http:/ /1 ocal host/ Deno/")]
public class MyTest : WbService {

349

[WebMet hod]
public String WhoAmM () {
return Thread. Current Principal.ldentity. Nane;

The Web service class My Test implements amethod VWO A that Smply returns the name of the identity
associated with the managed thread on which the method is called.

For the experiment, the Web service is hosted on the local machine under the 11S virtud directory Deno. Thisalows
the Web service to be accessed as http://localhost/Demo/MyTest.asmx.

Recall that it is the responsibility of the client to provide the credentids to the server. Under .NET, the client's
credentials are represented in astandard interface | Cr edent i al s. The framework also comes standard with two
classes based on thisinterface, Net wor kCr edent i al and Cr edent i al Cache. The

Net wor kCr edent i al class provides credentids for password- based authentication schemes such as basic, digest,
NTLM, and Kerberos. The Cr edent i al Cache provides storage for multiple credentials. We use these classes

later in our examples.

Notethat thetypes| Cr endent i al s, Net wor kCr edent i al ,and Cr edent i al Cache are defined under
the namespace Sy st em Net , which provides a smple programming interface for many of the common network

protocols.

To consume the Web sarvice, our client application generates and uses a proxy class My Test usngwsdl . exe
(Chapter 6). The client code creates an instance of the proxy class, calls the method Who A, and displays the return

vaue.

Recdll from Chapter 6 that the generated proxy classisinherited from SoapHt t pCl i ent Pr ot ocol . Thisclass
definesaproperty, Cr edent i al s, tha wewill useto set the client's credentids.

Anonymous Access

In the case of anonymous access, any client can connect to the Web server. The 11S server does not expect any
credentids from the client.

Here isthe client code that accesses the Web service using anonymous 1S authentication:

/1 Project WebSecurity/ Myd i ent

class M/App {

static private readonly String
MYURL="http://| ocal host/ Deno/ MyTest . asnx";

/1 11Sis set for anonynous access

350

public static void UseAnonynousldentity() {
M/Test t = new MyTest ();
t. Ul = MYURL;
String s =t.WwoAM ();
Consol e. Wi teLine(s);

Note that the client need not specify any credentids to the server.

When you run this program, WAOAM returns an empty string because ASP.NET does not associate any security
context to the managed thread.

Integrated Windows Authentication

Integrated Windows authentication uses a cryptographic exchange with the client to confirm the client's identity.
Currently, this communication mechanism is available to only two types of clients Internet Explorer and .NET
gpplications.

For .NET applications, theclass Cr edent i al Cache definesadatic property, Def aul t Cr edent i al s, that
can be used to pass the client's identity to the server. Thisis highlighted in the following code excerpt:

/1 11Sis set for Integrated Wndows Authentication
public static void UseDefault Wndowsldentity() {
MyTest t = new MyTest ();
t. Ul = MYURL;
t.Credentials = Credential Cache. Def aul t Credenti al s;
String s = t. WA ();
Consol e. Wi teLine(s);

Theproperty Def aul t Cr edent i al s represents the system credentids for the security context of the user
running the client gpplication. However, if the underlying OS thread is impersonating a user,
Def aul t Credent i al s represents the credentias of the user being impersonated.

Basic Authentication

Basic authentication is used for nonsecure identification of clients. The user name and the password are sent to the
server as base-64 encoded text. Note that the user name and the password are encoded, not encrypted, in this type of
authentication.

A dlient can dedl with this mode of authentication by using the dassNet wor KCr edent i al , asillugrated in the
following code excerpt:

public static void UseSpecificWndowsUserldentity(
351

String user, String password, String donmain) {
MyTest t = new MyTest ();
t.Url = MYURL;
t.Credentials = new Net wor kCredenti al (user, password,
donai n);
String s = t. WA ();
Consol e. Wi teLine(s);

The congructor of Net wor kCr edent i al takes as parameters the user name, password, and the domain to which
the user belongs. Thisinformation is passed to the server as base-64 encoded text.

An overloaded constructor of Net wor kCr edent i al takes just the user name and the password as parameters.
Thisisuseful if basic authentication for the virtud directory isdready configured with a default domain name.

Thereisyet ancther way to specify the credentiasin the case of basic authentication: Use the class
Cr edent i al Cache and add one or more credentiasto it, asillustrated in the following code excerpt:

public static void UseSpecificWndowsUserldentity2(

String user, String password, String domain) {

Credenti al Cache ¢ = new Credenti al Cache();

c. Add(new Uri ("http://local host/"), "Basic",
new Net wor kCr edenti al (MYUSR, MYPSWRD, MYDOVAI N)) ;

M/Test t = new MyTest ();

t. Ul = MYURL;

t.Credentials = C;

String s = t. WA ();

Consol e. Wi teLine(s);

The Add method on Cr edent i al Cache takesthree parameters. The first parameter isthe URI prefix of the Web
site. The second parameter represents the authenti cation method used by the URI. Possible optionsare basi ¢ and

di gest . Thethird parameter isthe Net wor KCr edent i al object that should be used for the specified URI. The
ideaisto store a callection of credentias for various Web resources as asingle unit. When the Get Cr edent i al
method iscaled, Cr edent i al Cache returns the proper set of credentials, as determined by the URI of the Web
resource and the requested authentication scheme. Applications that use a variety of Internet resources with different
authentication schemes benefit from using the Cr edent i al Cache dlass, because it stores al the credentials and

provides them as requested.
Digest Authentication

Digest authentication sends a hash vaue over the network rather than the password. This mode wasintroduced in [1S
5.1 and is not widely supported on other platforms.

It isleft as an exercise for you to take the previous implementation and modify it for digest authentication.

352

Now that we understand the various authentication methods available under 11S, hereis apop quiz for you: Let's say
you et the [1S virtua directory to use anonymous access as well asintegrated Windows authentication (Figure 9.8).
What is the authentication method that you think will be used?

It turns out that if anonymous authentication is enabled aong with any other authentication mode, 11S does not, by
default, bother to authenticate any user. That is, dl users are treated as anonymous users.

This default behavior can be overridden by sending to 11S an HTTP 401 status code (Unauthorized) from the code
handling the request. On receiving this status code, 11S will go ahead and authenticate the user.

The following code is the revised implementation of our Web service method. This code returns the 401 status code to
[ISif it finds that the identity of the caller isblank:

[VebMet hod]
public String WhoAmM Ex() {
String s = Thread. CurrentPrinci pal .l dentity. Nane;
if (s.Length == 0) {
Context. Trace. Wite("Sendi ng 401 status code");
t hi s. Cont ext . Response. St at usCode = 401;

}

return s;

As the code shows, the status code is set on the response object. This object, whichis of type Ht t pResponse,
encapsulates dl the HTTP response operations for the current HT TP request. Complete information about the current
request itself is encapsulated in an object of type Ht t pCont ext and can be accessed asthe Cont ext property on
WebSer vi ce.

Instead of setting the 401 status code in each of the methods, there is away to set it at the gpplication level, by means
of an HTTP module. HTTP modules are managed classes that implement | Ht t pMbdul e and residein the
ASP.NET worker process. They get to intercept each request before it reaches your ASP.NET application. For a
sample implementation, see[Bro-02].

This concludes our discussion of 11S authentication schemes. A find note on |1S authentication: It is aso possibleto
configure [1S with SSL and use client certificates for authenticating the user. Check the SDK documentation under the
topic "Securing XML Web Services Created Using ASP.NET" for a code sample on using client certificates.

ASP.NET Authentication

ASP.NET implements authentication using authentication providers, which are code modules thet verify credentias
and implement other security functiondity, such as cookie generation.

At present, ASP.NET supports three authentication providers indows, Forms, and Passport. An ASP.NET
application enables a specific authentication provider by meansof <aut hent i cati on> XML taginthe
application's \V\eb. conf i g file. A sample configuration that corresponds to Windows provider is shown here:

353

<confi guration>
<syst em web>
<aut henti cati on nmode="W ndows" />
</ syst em web>
</ configuration>

Other possible options for the authenticetion mode are For s, Passpor t , and None. The authentication mode
None isused when you are not authenticating users a al. In this case, ASP.NET does not associate any security
context with the managed threeds.

Windows Authentication

This provider relies on the authentication capabilities of 11S. After 11S completes its authentication, ASP.NET
associates the security context of the user with the managed thread where the user call is being processed.

Not dl 11S authentication modes can be combined with al ASP.NET authentication modes. In the case of ASP.NET
Windows authentication, for example, 11S cannot be set to anonymous access.

An excdlent article that describesin detail the various authentication modes of 11S and ASP.NET, and their possible
combinations, is [Ker-01]. The article dso guides you in sdlecting the right authentication mode for your ASP.NET
application.

Forms Authentication

Using this provider causes unauthenticated requests to be redirected to a specified HTML form using client-side
redirection. The client can then supply logon credentials and post the form back to the server. If the gpplication
authenticates the request (using application-specific logic), ASP.NET issues a cookie that contains the credentiadls or a
key for reacquiring the client identity. Subsequent requests are issued with the cookie in the request headers, which
means that subsequent authenti cations are unnecessary.

Passport Authentication

Thisisacentraized authentication service provided by Microsoft that offers a single logon facility and membership
sarvices for participating Sites.

ASP.NET, in conjunction with the Microsoft Passport SDK, provides similar functiondity as Forms authentication to
Passport users. Unfortunately, the client-sde authentication module for Passport has not been released as of this
writing.

Custom Authentication

Web services uses SOAP messages for communication and SOAP headers provide a great way of passing out-of-band
information thet is not related to the semantics of the Web service. Unlike the Body element of a SOAP message,
which is processed by the Web service method, the Header element is optional and thus can be processed by the

underlying infrastructure.

Interested readers may wish to check the section " Securing XML Web Services Created Using ASP.NET" in the SDK
documentation for extending SOAP messages. The article dso includes an HTTP module example that provides a
custom authentication mechanism using SOAP headers.

Role-Based Security

The ASP.NET authentication mechanism, when gppropriately corfigured, associates a security context of the client
principa with the managed thread servicing the client's call. This principa can be accessed by cdling

Thread. Current Princi pal . Essentidly, what this means is the same role-based security mechanism thet is
availableto .NET client applicationsis also available to ASP.NET gpplications. The following code excerpt for aWeb
sarvice method illusratestheuse of | Pri nci pal method | s nRol e to check if the caller belongs to the local

administrators group:

[WebMet hod]
public String SensitiveQperation() {
| Principal pr = Thread. Current Princi pal ;
bool b = pr.IslnRole(@BU LTI N Admi ni strators");
if ('bh) {
t hrow new Exception("Only adm nistrators all owed!");

}

return "Successful operation";

Itisaso possible to provide role-based checks for the entire ASP.NET application by means of the
<aut hori zat i on> XML dement in the gpplication's\\eb. conf i g file The following sample shows how to

alow locd adminigrators to use the gpplication and deny the rest of the users:

<confi guration>
<system web>
<aut henti cati on node="W ndows" />
<aut hori zati on>
<all owrol es="BU LTI N\ Adm ni strators" />
<deny users="*" />
</ aut hori zati on>
</ system web>
</ configuration>

Inthiscase, an Ht t pMbdul e cdled Ur | Aut hor i zat i onModul e performsthe role check and returns a401
gatus code to 11Sif the check fails, forcing 1S to authenticate an anonymous client or to simply fail the request.

Elementsal | owand deny can be applied on roles or users. The usars list may contain specific names, as shown

here:

<al | ow user s="donmai n1\ user1, donai n2\ user2, donai n3\user3" />

355

Instead of specific names, you can dso use wildcards. The configuration mechanism supports two wildcards?TT>* to
represent all users and ? to represent anonymous users.

Note theway theal | owand thedeny elements have been ordered in the configuration file.

Ur | Aut hori zat i onModul e concatenates authorizations, starting from the V\eb. conf i g inthe current
directory (if any), back up to the parent directory, dl the way to the virtud root. Finaly, it adds the authorization
information from Machi ne. conf i g, which by default looks like this

<aut hori zati on>
<al | ow users="*" [>
</ aut hori zati on>

For our gpplication, the resulting list would be;

<aut hori zati on>
<al l ow rol es="BU LTI M\ Admi ni strators" />
<deny users="*" [>
<al | ow users="*" [>

</ aut hori zati on>

TheUr | Aut hori zat i onMbodul e walks from the top of the list looking for a match. As soon as a match is found,
it stops and either alows or denies the user based on the match. Had we not placed the deny dementinthe
authorization list, access would have been granted to any user, making our role-based check worthless.

Code Access Security

The code access permissions that are available to a .NET client gpplication are dso available to an ASP.NET
application.

ASP.NET Web gpplications can be further configured by assigning them trust levels. Trust levels are configured using
the<t r ust > dement within the configuration file, either at the machine leve or at the application level:

<trust level="Full | Hgh | Low| None" originUl="url" />

Theori gi nUr | attribute specifies an application's URL of origin. If present, this can be used for some permissions
such as connecting back to the host of origin over the Web. Thisisimportant for some ASP.NET agpplications that
require connecting to the origin for proper functioning. Typicaly, or i gi nUr | pointsto an empty gring.

Each leve determines the application's permissions, the details of which are specified by an XML security palicy file.
Each level mapsto aspecific file that is present in the <Fr amewor kRoot Di r >/ CONFI Gsubdirectory.

Full Trust
Thislevel givesthe ASP.NET application unrestricted permissions. There is no file associated with this trust.

High Trust

356

Thislevel provides permissions that grant gpplications read and write access to the application directory (subject to
OS permissions) and alows the gpplication to replace the authentication principa object. It aso restricts gpplications
from cdling into unmanaged code.

Thistrug level mapsto thefileweb_hi ght rust . confi g.

Low Trust

Thisleve alows applications to read from the gpplication directory and provides limited network connectivity.
Applications can connect back to their host site, assuming theor i gi nUr | attribute of the <t r ust > dement is

configured gppropriately.
Thistrug level mapsto thefileweb | owt r ust . confi g.

No Trust

Thislevel provides basic execution permission and supports the application's use of isolated storage (a mechanism
that alows code to be safely associated with saved data).

Thistrust levd mgpstoweb_not rust . confi g.

Impersonation

Recall from our earlier discussion that there are two security contexts under .NET, one associated with the managed
thread processing the request and one used by the underlying physica thread when it tries to access a secured object
such asan NTFSfile. If the physical thread is not under impersonation, then the security context of the processis used
to access the object.

Under ASP.NET, by default the security context of the user that 11S impersonates is available to

aspnet _i sapi . dl | butisnever passed to the ASP.NET worker process (refer to Figure 9.7). Asaresult, the
underlying physicd thread used to process the current request is not under impersonation. This means that the identity
used to access a secured OS object isthat of the ASP.NET worker process. Recall that thisidentity is ASPNET by
default but can be configured viaMachi ne. confi g.

Y ou can enable impersonation for an ASP.NET application by means of the<i dent i t y> dementinits
Web. confi g file asshown here

<confi guration>
<syst em web>
<identity inpersonate="true"/>
</ syst em web>
</ configuration>

When impersonation is enabled, theaspnet _i sapi . dl | hands over the impersonation token to the worker
process. The physical thread on which your managed code is running will be impersonating the user represented by
the token.

357

The user account being impersonated depends on how the IS virtua directory has been sat for authentication. If the
[1Svirtua directory is set for anonymous access, this user is IUSR_<SERVER> (by default, but thisis configurable).
For al other authentication schemes, it is the authenticated client.

ASP.NET provides yet another option for selecting the user to be impersonated. Y ou can specify the user to be
impersonated, along with the password, in the configuration file, as shown here:

<identity inpersonate="true" user Nane="donai n\usr"
passwor d="pwd"/ >

This concludes our discussion on various security mechanisms under ASP.NET. Interested readers may wish to read
[Pro-02] for building more secure siteswith ASP.NET.

Summary

NET offers two types of security mechanisms CAS and role-based security. These security mechanisms are defined
on top of the security mechanism offered by the underlying OS.

CAS grants code access permissons to an assembly based on certain evidence about the origin or author of the
assembly. The .NET Framework defines various code access permissons such as reading or writing files, changing
environmentd variables, displaying didog boxes, and so on. The standard classes under .NET that ded with any
security-sendtive operations are designed to perform the appropriate security check. If the assembly does not have the
needed permissions, the security mechanism throws an exception of type Secur i t yExcept i on.

By default, the security access check is performed on dl the callersin the cal stack, which prevents luring security
attacks.

Instead of relying on the standard classes to throw the Secur i t yExcept i on, acomponent can perform the
security check by itself, or the code may deny itself certain permissions or assert certain permissions. When a
permission is asserted, the common language runtime does not walk the stack to check if the permission has been
granted to dl the cdlers. Obvioudy, only those permissions that have been granted to the assembly can be asserted.

It isaso possible to demand, assert, or deny code access permissons using atributes. The framework defines
attributes corresponding to each of the code access permissions.

The common language runtime grants permissons to an assembly based on the information it obtains about the
assembly. Thisinformation, called evidence, includes items such as the origin of the assembly or its author.

The exact permissions that are granted to an assembly are based on an entity on the local machine called the security
policy. The security policy contains code groups and permission sets. A permission set isanamed set of permissons
and a code group maps a specific evidence to a specific permission set. The evidence is represented as a membership
condition.

358

The security policy can be configured a four levels enterprise, machine, user, and AppDomain. For the purpose of
policy evauation, the enterprise level gets the top priority, followed by machine, user, and AppDomain levelsin that
order. At each policy level, permissions from each matching code group are merged. In the fina step, the granted
permissions that are common to each policy level are selected and granted to the assembly.

Y ou should be aware of a security issue with CAS: Although CASisagood step toward preventing security attacks, it
isdtill thefirgt step. Hackers are il bound to find some holes in the security mechanism. Hopefully, the technology
will mature with time.

Role-based security grants access to sensitive data based on the role a user belongs to. Under this mechanism, a user
and his or her roles are encapsulated in an object referred to as the principal. Two types of principas come standard
with .NET generic and Windows-specific.

Each managed thread can be associated with aprincipal. The type of principa is dictated by a policy defined on the
goplication domain.
There are three ways to perform arole check on the thread principal ~ xplicit programming, imperative programming,

and declarative programming.

NET applications actudly have two security contexts to ded with: one of the managed code and one of the
underlying OS. .NET provides methods that the managed code can use to force the underlying physical thread to
impersonate.

ASP.NET applications run in a separate worker process athough the applications are hosted under 11S. By default, the
worker process runs under an account ASPNET. However, the account to use can be configured from
Machi ne. confi g.

ASP.NET applications have to ded with two levels of authentication. The first level of authentication is done by the
[1S and the second level of authentication is handled by ASP.NET.

For |IS authentication, it is the responsibility of the client to provide credentids to the server. The NET Framework
provides some classes that the client code can use to provide the credentias.

ASP.NET authentication uses authentication providers to further authenticate the client.

The CAS and the role-based security mechanismsthat are available to .NET applications are dso available to
ASP.NET gpplications. In addition, ASP.NET smplifies authorization by alowing you to define alowed and denied
usersin the gpplication's V\eb. conf i g file

ASP.NET dso provides amechanism that alows you to force impersonation on the physica thread that is currently
running the managed code.

In the next chapter, we will dedl with another type of role-based security mechanism. This security mechanism is
offered by COM+ but dso isavailable to .NET gpplications.

359

References

[Bro-01a] Brown, Keith, "Enforce Code Access Rights with the Common Language Runtime,” MSDN Magazine,
February 2001. msdn.microsoft.com/msdnmag/issues/01/02/CAS/ICAS.asp

[Bro-01b] Brown, Keith, " Security Briefs: ASP.NET Security Issues,” MSDN Magazine, November 2001.
msdn.mi crosoft.com/msdnmagy/i ssues/01/11/Security/Security0111.asp

[Bro-02] Brown, Keith, " Security Briefs: Managed Security Context in ASP.NET," MSDN Magazine, January 2002.
msdn.microsoft.com/msdnmag/i ssues/02/01/Security/Security0201.a5p

[Ker-01] Kercher, Jeff, " Authentication in ASP.NET: .NET Security Guidance,” MSDN Online, Microsoft Corporation,
August 2001. msdn.microsoft.comvlibrary/en us'dnbda/html/authaspdotnet.asp

[Pro-02] Prosise, Jeff, "ASP.NET Security: An Introductory Guide to Building and Deploying More Secure Stes with
ASP.NET and 11S" MSDN Magazine, April 2002. msdn.microsoft.com/msdnmagy/i ssues/02/04/A SPSec/A SPSec.asp

360

Chapter 10. Enterprise Services

Enterprise system development has higtoricaly been avery time- and resource- consuming process. The development
complexity arises from the extra enterprise-level requirements such as scaahility, robustness, security, autometic
transaction processing, and so on.

The .NET Framework provides many infrastructura services to meet the needs of enterprise systems. This alows
businesses to focus on their core competencies ingtead of building the plumbing themselves.

In this chapter, we examine in detail some important requirements for enterprise systems and the services provided
by .NET to meet these requirements.

Enterprise Systems: .NET and COM+

An enterprise system typicaly conssts of many programs running on different computers interacting with each other.

It isalarge application, a least when compared to a single desktop application, and typicaly integrates with databases

and other services such as message queues. Enterprise systems are generally used in large organizations such as banks,
arlines, insurance companies, and hospitals, and are accessed by hundreds of clients Smultaneoudly.

Deveoping enterprise systems has historically been along, expensive process. The development complexity arises
from the extra enterprise-level requirements such as scaability, robustness, security, automatic transaction processing,
and so on.

To meet these requirements, enterprise gpplication designers tend to develop their own in-house software
infrastructure. Thus, developing enterprise systems not only becomes a dow process, but it so consumes resources
for development aswell as for maintenance, for what is essentialy a generic infrastructure problem.

To help developers build enterprise systems, Microsoft introduced a framework caled COM+ [Tap-01]. COM+" isan
advanced COM runtime environment that provides solutions to many generic infrastructure problems, including those
just mentioned. It provides a set of services that makes building scalable distributed agpplications easier. COM+ isan
integra part of Windows 2000 OS and later versions.

M The origins of COM+ lie in a technology called Microsoft Transaction Server (MTS).

NET carries on the trend by providing the necessary infrastructure to develop enterprise systems. However, asit turns
out, the first release of the NET Framework has provided a good replacement for COM, but not for COM+. This

rel ease depends on COM+ to provide the necessary enterprise services. Components that are built on .NET enterprise
services are required to be hosted under COM+. Perhapsin alater release, this dependency will be completely
eliminated. For now it forms a good mechanism to integrate .NET components with existing COM/COM +
components.

It isworth mentioning that .NET tries to isolate devel opers from knowing COM+ by providing the necessary classes
and tools. | too will honor this tradition and will do my best to keep you isolated from knowing the internals of COM+.

361

Y ou will learn about enterprise services support only from .NET's perspective. Any COM+ concepts are introduced
only on aneed-to-know basis.

We dart with developing asimple .NET component that needs COM+ enterprise services. Such components are
referred to as serviced components.

Developing .NET Serviced Components

The component we will develop can be considered a part of the human resource management system. It provides
sdary information for an employee.

The .NET Framework provides many types to support building enterprise systems. These types are defined under the
namespace Syst em Ent er pri se- Ser vi ces and areimplemented in an assembly named

System Ent er pri se- Ser vi ces. If you are using Visud Studio .NET to develop your serviced component,
you need to explicitly add a reference to this assembly in your project.

All the standard classes that we discuss in this chapter can be assumed to belong to the
System Ent er pri seSer vi ces namespace unless otherwise explicitly sated.

The basic steps of developing a serviced component are as follows:

Create a serviced component class.

Use declarative attributes on the class to indicate one or more COM+ services that are needed by the class.
Configure the assembly by defining one or more assembly-level atributes.

Register the serviced component with COM+.

A w DB

Serviced Component

The most important type defined inthe Syst em Ent er pri seSer vi ces namespaceisthe class
Ser vi cedConponent . Hereisits patid definition:

public abstract class ServicedConponent : ContextBoundObject,
| Di sposabl e

{
/I Cont ext BoundChj ect net hods
/'l Servi cedConponent net hods
/'l 1 Di sposabl e nmet hods (usi ng Di spose pattern)
public void D spose();
protected virtual void D spose(bool disposing);
}

362

Any managed class that wishes to use .NET enterprise services must extend Ser vi cedConponent , as highlighted
in this code excerpt:

/1 Project SinpleExanpl e/ Enpl oyee

using System EnterpriseServices; // ServicedConponent, etc.
nanespace MyConpany {

public class Enpl oyee : Servi cedConponent {
private String menpl oyeeNane;
publ i c Enpl oyee(){
m enpl oyeeNane = nul | ;

public String Nanme {
get {return m enpl oyeeNane; }
set {m enpl oyeeNane = val ue; }

The presenceof Ser vi cedConponent inaclasss hierarchy tells the common language runtime thet thisisa
configured class and that the instances of this class need to live in COM+ contexts.

COM+ Contexts

SERE COM+ contexts are conceptud regions within a Win32 process that hold objects requiring

—_— smilar COM+ services (much like .NET contexts hold .NET objects having compatible context
properties). If aclass needs a COM+ service, asindicated by the COM+ attributes on the class,
COM+ makes sure that the ingtances of that class aways reside in contexts that provide that
service. When aclient from one context references an object in a different context, COM+
returns a proxy to the client. Any cal made on the proxy is intercepted by COM+ so that the
necessary services can be provided to the corresponding object.

Notethat Ser vi cedConponent inherits from Cont ext BoundCbj ect , and from Mar shal By Ref Obj ect,
giving your serviced component the benefits of those two classes.

Also note that a serviced component must provide a public default constructor—it cannot have parameterized
congtructors. If you require such parameters, you need to design aworkaround. In the preceding example, the
employee nameis set by exposing a public property Nane.

363

Disposing Resources

It isinteresting to note thet the implementation of | Di sposabl e that Ser vi cedConponent providesis based
onthe Di spose pattern that we discussed at length in Chapter 4. Essentialy, the base class exposestwo Di spose
methods, a public method that implements| Di sposabl e. Di spose and a protected helper method. If you intend
toimplement Di spose inyour Ser vi cedConponent -derived class, for example, to dispose a resource that the
classis holding, then you need to cal one of thetwo Di spose methods of the base class from your implementation

of Di spose. Thefollowing code excerpt shows an implementation of a serviced component that implements the

Di spose pattern. We come across this class later in the chapter when we discuss transactions.

/1 Project Transactions/Banks

public class FidelityBank : ServicedConponent, |Di sposable {
private MyAccount sDB m db;

11
/| Standard Di spose pattern
11

~Fi del i tyBank() {
D spose(fal se);

public void O ose() {
D spose();

new public void D spose() {
Di spose(true);
CC. SuppressFinalize(this);

/1 Al ways di spose unmanaged resources
/'l Di sposing==true => di spose nmanaged resource as well
protected override voi d D spose(bool disposing) {
i f (disposing) {
/1 di spose nanaged resources
if (null '=mdb) {
m db. d ose();
m db = nul | ;

}

base. Di spose(di sposi ng) ;

364

Note that the protected Di Spose method on the serviced component properly invokes the base classs Di spose
method.

Also note thet, as this particular serviced component is not dealing with any unmanaged resource (at least directly),
thereis no real need to implement the destructor on the class. | have Ieft it there for the sake of completeness.

After inheriting your dassfrom Ser vi cedConponent andimplementing interface | Di sposabl e if need be,
the next step is to declare certain attributes on the class that dictate the required COM+ services on the class.

Enterprise Service Attributes

TheSyst em Ent er pri seSer vi ces namespace defines a set of attribute classes that can be used to define a
serviced component's COM+ service requirements. Table 10.1 lists some important attributes that can be gpplied to a
serviced component. We will be discussing these attributesin greeter detail throughout the chapter as we learn more
about configuring serviced components to take advantage of various COM+ services.

Table 10.1. Enterprise Service Attributes for Classes

Attribute Class Description

Aut oConpl et eAttri bute Auto completion of transactions

Conponent AccessCont rol Attri but e Component, interface, and method-level access check

Constructi onEnabl edAttri bute Object construction using externally specified construction
strings

Just | nTi neActi vati onAttri bute |Enables JIT activation

oj ect Pool i ngAttri bute Enables object pooling
SecurityRol eAttribute Role-based access check
Transacti onAttribute Enable transaction support

A serviced component is annotated with one or more attributes, as shown here:

[Just I nTi meActivation]
public class Enployee : ServicedConponent {

In this code, the presence of theJust | nTi meAct i vat i on atribute indicates that the Enpl oy ee classrequires
the use of COM+ JIT activation service.

NET dlows you to gpply attributes to your serviced components with grest flexibility. Y ou can gpply as many
attributes as you like. Y ou need not even apply any attribute and till can register the serviced component with the
COM+ Cadog Manager, and configure it later using the Component Services Explorer, dthough it is not advised.

365

Based on the attributes specified on the serviced component, the instances of the serviced component are placed in a
proper COM+ context.

It isinteresting to note that none of the serviced atributesisinherited from Cont ext At t r i but e. Thisis because
the common language runtime does not require a serviced component's objects to be placed in a .NET context. Instead,
it relies on the interception provided by the COM+ to provide the necessary services.

So why does Ser vi cedConponent inheit from Cont ext BoundCbj ect ?Waell, this makesit possible for
you to specify context atributes if need be (along with serviced attributes) on the serviced component.

COM+ Catalog

SERE Classes that use COM+ runtime services and are annotated with COM+ attributes are called
—_— configured classes. COM+ gores the configuration information (attribute values) in a
repository cdled the COM+ catalog.

The COM+ catadog is composed of COM+ applications. A COM+ gpplication is agroup of one
or more associated configured classes. There are two types of COM+ gpplications—library
gpplications and server applications. If a configured class belongsto alibrary application, new
ingtances of the class are created in the client's process. If a configured class belongsto a server
application, then COM+ creates a dedicated surrogate process (dI | host . exe) to housethe
instances of the configured class.

The OS comes with a GUI toal caled the Component Services snap-in that one can useto view
and modify the configuration information about a COM+ application.

Note that dthough .NET tries to isolate devel opers from knowing COM+, thisisolation bresks
downin afew places. For example, you need to use the COM+ Component Services snap-into
start or stop .NET-based COM+ server applications.

At this point, we are dmost ready to compile the serviced component and register its configuration information in the
COM+ catadlog. However, let'sfirst define afew useful assembly-level attributes on the serviced component.

Configuring the Assembly

To register a serviced component in the COM+ catalog, there are afew settings that you should specify on the
assembly. These configuration settings include the name of the COM+ application for the serviced component, the
mode of the COM+ application (library or server), and so on. These configuration settings are defined as
assembly-leve attributesinthe Syst em Ent er pri seSer vi ces namespace. Table 10.2 lists some routingly
used assembly-leve atributes.

Table 10.2. Attributes for COM+ Applications

366

Class Description

Appl i cati onNaneAttri bute Name of the application
Applicationl DAttribute Unique ID for the application
DescriptionAttribute Application description (can also be used to describe

classes, methods, and interfaces)

Appl i cationActivationAttribute Activation mode—either library or server

Appl i cati onAccessControl Attri but e|Security settings

Appl i cati onQueui ngAttribute Enables the application for queued components

Note that the use of these attributesis optional. If not specified, the registration mechanism does a reasonable job of
picking up a proper default vaue.

Application Name

The attribute Appl i cat i onNane is used to describe which COM+ application the configured classesin the
assembly belong to. Its usage is shown here;

[assenbl y: Applicati onNane("Enpl oyee Informati on Systeni)]

If you do not provide an gpplication name, .NET uses the name of the assembly as the COM+ gpplication name.

Application Identity

The attribute Appl i cat i onl Disused to specify aglobaly unique identity for the COM+ gpplication, as shown

here:

[assenbly: Applicationl D("5209F894- D801- 44b7- BBBA- 4706A2546467")] .
The regidration process ingdls the configured classes from the assembly into a COM+ application with the given ID
(if specified) and name. If the COM+ gpplication does not exigt, the registration process creates a new COM+

goplication with the specified ID.

Application Description

Attribute Descri pt i onAttri but e can be used to provide a description for the COM+ application. The usageis

shown here;

[assenbly: Description("M enployee information systeni)]

Notethat the Descri pti onAttri but e canaso be applied to classes, class methods, and interfaces. When the
assembly isregistered in the COM+ catalog, the descriptions are aso stored in the catalog and can be viewed &t each
leve (gpplication, class, method, interface) using the Component Services snap-in.

Activation Mode

The activation mode of the COM+ gpplication can be specified by means of an attribute,
Appl i cationActi vati on.Possbleoptionsare Act i vati onQpti on. Ser ver (for server gpplication)
and Act i vat i onOpti on. Li brary for library gpplication. The usage is shown here:

[assenbl y: ApplicationActivation(ActivationOption. Server)]

This attribute is used only during the creation of a new COM+ gpplication. If not specified, the registration
mechanism creates alibrary application.

Note that this attribute isignored if the specified COM+ gpplication dready exigsin the COM+ cataog.

It isimportant to understand the performance impact of server gpplication versus library application from the NET
client's perspective. When a.NET serviced component that is hosted in a server gpplication is ingtantisted, COM +
creates aclient callable wrapper (CCW; see Chapter 7) for the serviced component. When a .NET client triesto access
such a serviced component, the common language runtime creates a runtime callable wrapper (RCW) in the client's
process. The client accesses the serviced component using the RCW through the CCW. Thisisillugtrated in Figure
10.1.

Figure 10.1. Out-of-process activation.

DliHost.exe Client Process
CLR COM+ CLIR
|-- . ----'
MET Context : COM+ Context H NET Centext
Serviced : Client : Runtime
Component |t Colloble |3t Caolloble
Obiject : Wrapper : Wrapper
. ' L}
e o o e e o — —
COM+ Interceplion C?E:r

However, in case of in-process activations (library application), the common language runtime does not use the COM
interop layer (RCW/CCW) at all. Instead, it uses managed C++ cdlsto the COM+ API. Thisresultsin asignificantly
improved performance. This processisillustrated in Figure 10.2.

368

Figure 10.2. In-process activation.

Client Process
CLR COM+

|
B Eontext : COM+ Context |
Serviced | + I
Component i Client :
Object <> |gP»| Callable "
: Wrapper I
|
NET CDntE‘Xt +l—————————————-l

r) P COM+ Interception

roxy
NET Client

It isinteresting to note that, athough Figure 10.2 shows that the serviced component and the .NET client arein two
different NET contexts, it is entirdly possible to have them in the same .NET context. Recdll that the serviced
attributes are not context attributes and hence do not require a newer compatible context.

Signing the Assembly

There is one assembly-level configuration thet isamust (at least for now)—the compiled assembly must be strong
named. As the serviced component is hosted by a COM+ application, the assembly should be accessible to the
common language runtime within the COM+ gpplication. The common language runtime's assembly resolver can load
the assembly only from known locations. For example, for the library-type COM+ applications, the assembly must be
present in the directory where the client executable resides. Copying an assembly to the client's directory is not dways
desrable (especidly if there are many clients for the same COM+ gpplication). One location that the assembly
resolver can dways use is the GAC. For this reason, the COM+ integration plumbing mandates that the compiled
assembly be strong-named (only strong-named assemblies can be ingtdled in the GAC).

Recdl from Chapter 3 that a strong-named assembly can be created by defining an assembly-leve attribute,
Assenbl yKeyFi | e (namespace Syst em Ref | ect i on), in the source code and specifying as the parameter

the name of the file containing the cryptographic public—private key pair. The usage is shown here:
[assenbl y: Assenbl yKeyFil e(" MyKey. snk")]

Note that athough the assembly is required to be strong named, you don't dways have to ingtdl the assembly into the
GAC. Evauae your Studion to seeif thisisthe case. | prefer not to clutter the GAC unless absolutely required.

369

Compile your source code. At this point, the assembly is ready to be registered in the COM+ Cataog.
Registering the Serviced Components
The serviced components in your assembly can be registered in three ways.

Manudly, using atool provided by .NET.

Programmatically, using a utility class provided by .NET.

Automaticdly, by running the client program.

Regardless of the technique you use, the regigtration process ingtdls the configured classes from the assembly into a
COM+ gpplication and corfigures them using the pecified attributes. For those attributes that are not specified, the
default COM+ settings are used. Once registered, the serviced components are available for the clients to consume.

If the assembly contains incompetible attributes, the incompetibility is detected during registration and the registration
is aborted.

It should be noted that registering the serviced components requires administrative privileges, that is, the user
registering the serviced component must be amember of the local Administrators group.

Manual Registration

The .NET Framework provides a command-linetool caled Services Ingdlation Utility (r egsvcs. exe) that can be
usad for this purpose. The usage is shown in the following commeand line:

regsvcs. exe MyServer. dl |
When executed, thistool performs three operations:

1. Itregigersthe assembly asa COM component (asif you had run r egasm exe).
2. ltemitsaCOM typelibrary (asif youhadrunt | bexp. exe).
3. Usng thetype library, it ingals the serviced components from the assembly into the COM+ catalog.

By default, the tool triesto find and use the specified COM+ gpplication. If the gpplication does not exi<, the tool
crestes anew one. The same behavior can be explicitly achieved by using the - f ¢ command-line switch.

If the specified COM+ gpplication is found, the tool aso reconfigures the application based on the specified atributes.

If the default behavior is not acceptable, the tool provides many other command-line switches to customize the
behavior. Check the SDK documentation or smply run r egsvcs. exe from acommand window for aligt of

available switches.
To uningal an assembly from the COM+ catd og, the command-line switch - u can be specified, as shown here:

regsvcs. exe —u MyServer. dl |

370

Programmatic Registration

The namespace Syst em Ent er pri seSer vi ces providesaclass, Regi strati onHel per, that youcan
use to programmatically register or unregister an assembly containing serviced components. Even r egsvcs. exe
internaly usesthis classto perform the registration.

Regi strati onHel per implementsamethod, | nst al | Assenbl y, that you can useto register an assembly
in the COM+ catdog, asillustrated in the following code. This program registers our serviced component assembly
Enpl oyee. dl | :

/1 Project SinpleExanpl e/ MiInstaller

public static void Min() {
Regi st rati onHel per hel per = new Regi strati onHel per();

String appNane = nul | ;
String tlbNanme = nul | ;
hel per. I nstall Assenbl y("Enpl oyee. D | ", ref appNane,
ref tlbName, InstallationFlags. CreateTarget Application);
Consol e. Wit eLi ne(
"Regi stration succeeded. App={0}, Tl b={1}",
appNane, tl bNane);

By passingin nul | for the application name (the second parameter) and the type library name (the third parameter),
thecdl rdieson | nst al | Assenbl y to appropriately generate the name of the application and the name of the
typelibrary. Thefina parameter defines the flags that control the installation process. In the preceding code, the
passed value indicates that a new COM+ agpplication will be crested. If the gpplication areedy exidsin the catdog,
the cdl will fal withaRegi st rati onExcept i on.

To uningal an assembly from the COM+ catidog, Regi st r at i on- Hel per implements another method,
Uni nst al | Assenbl y. When cdling this method, just supply the name of the assembly to uningtall.

Automatic Registration

When a.NET dient ingtantiates a serviced component, the common language runtime checks whether the serviced
component's assembly has aready been registered with the COM+ catdog. If the assembly is not dready registered,
the runtime goes ahead and inddlsit (usingthe Regi st rat i onHel per . | nstal | Assenbl y method).

In generd, you should not rely on automatic registration. Ingaling an assembly in the COM+ catdog requires
adminigrative privileges. If the NET client that first uses the serviced component does not have the administrative
privileges, the regigration fallswithaRegi st r at i on- Except i on.

Of course, anyonewho runsr egsvces. exe mus have adminidretive privileges aswdl. So, even if you choose one
of the other methods of regigtration, the act of registration must till be done by an adminigrator.

371

Regardless of the registration mechanism used, the end result is thet the serviced component isingtalled in the catalog
under a COM+ agpplication. Figure 10.3 shows a snapshot of the ingtalled serviced component as seen from the
Component Services snap-in.

Figure 10.3. Installing a .NET serviced component.

7= Component Services Q|Elg|

@ Ble Adion Vew Window Hep TR
& =+ B@E X B % TEEESS

[C] Console Foat A | Emplo...

- (@ Component Services _ICompe

= Computers “liegany

= gl‘-‘l';.r Compuber JRoles

= [COM+ Applications
s &9 NET Ukilkies
+ Analyzer Control Pubfisher Application
£ &9 COM4+ Explorer
+ & COM+ QL Dead Letter Queus Listener
¥ &% COM+ Utilties
- .},? Employes Information System
=[] Camponents
= ﬂ MyCompary Emploves
=[] Interfaces
= %9 Employee
(] Methods
¥ 9@ _Object
+ "9 IDisposable
+ 59 IManagedtbiect
+ - IRematebispatch
+ @ System_EnterpriseServices_IServicedComponentIno
*] Subscriptions
* j Lagacy Components
+] Rclles
&2 [15 In-Process Applications i

A few things should be noted here. Firgt, the COM interop mechanism generates a PROGID for the serviced
component intheform <nanespace>. <cl ass> by default. In our case, thisis My Conpany. Enpl oyee.
However, you can override this default behavior by meansof Pr ogl dAt t ri but e (Chapter 7).

Second, the COM interface Enpl oy ee representsthe .NET class Enpl oy ee. Recall from Chapter 7 that by
default any public method in the dass Enpl oy ee does not automaticaly appear in theinterface Enpl oyee
(athough you will ill be able to invoke the method vial Di spat ch interface). Y ou can change this behavior either
by implementing interfaces on your serviced component or by annotating your class with the attribute

O asslnterfaceAttri bute (Chapter 7).

Findly, athough you can modify configuration of your serviced component from the Component Services snap-in,
you should never do so. In many cases, the underlying .NET to COM+ plumbing relies on the declaretive attributesin
your classs code and not on the COM+ catal og.

In genera, you should view the COM+ catalog as a copy of your classs declarative attribute but not the real source.
The only attributes you should be changing in the COM+ catalog are the ones that are deployment specific, such as

372

Security settings and construction strings (we cover these settings shortly). The COM+ cataog exists because COM
did not have an extensible metadata mode for binary components. The common language runtime does have one.

Y ou can expect to see a future version of the COM+ runtime that relies more and more on the declarative attribute of
the common language runtime metadata model.

Implementing a Client

From the client's perspective, there is nothing specia about a configured class; the fact that it uses COM+ runtime
savicesisirrdlevant. The following code shows asimple client that usesthe Enpl oy ee class defined earlier:

/'l Project SinpleExanpl e/ Wd i ent

class M/App {
static void Main(string[] args) {

Consol e. Wit eLi ne(Thr ead. Cur r ent Cont ext . Cont ext |1 D) ;

usi ng (Enpl oyee enp = new Enpl oyee()) {
enp. Nane = "Jay";
Consol e. WiteLine(enp. Get Sal ary());

Note that the Enpl oyee classisingantiated within the scope of ausi ng statement. Thisis because the base class
Ser vi cedConponent implementstheintefacel Di sposabl e. TheSer vi cedConponent 's
implementation of thel Di sposabl e method Di spose handles releasing expensive resources such as handles to
database connections (if any).

Insteed of cdling Di spose on the object (whichiswhat usi ng does when the object goes out of scope), the client
can dso cal agatic method, Ser vi cedConponent . Di spose(hj ect , passing in the object to be disposed.
However, using the Di spose design paitern is preferred over cdling Di spose(hbj ect .

At this paint, we know how to develop, deploy, and use a serviced component. Let's now start looking at some
frequently used COM+ services.

JIT Activation

In an enterprise system, a user-driven client gpplication often creates an object, makes a method cdl, and holds on to
the object to useiit later. The time between calls can vary from seconds to minutes or even hours. Meanwhile, on the
server side, the object continues to stay dive, potentidly tying up expensive resources. Imagine the resource-sharing
problem that would arise if 100 or more clients locked access to the resources that they weren't even using.

373

JT activation is amechanism provided by COM+ to manage the lifetime of an object more efficiently. Theideaiis
very smple: The actua object is activated just prior to the first call made on it and is deectivated immediately after
finishing its work.

For now, assume object activation is the same as object crestion and object deactivation is the same as object
destruction. The digtinction will become clear in the next section when we discuss object pooling.

Configuration and Working

A serviced component is marked for JT activation using theclassJust | nTi neActi vati onAttri bute,as
shown in the following code excerpt:

/1 Project JlITActivation/Enpl oyee

[JustInTi meActivati on]
public class Enpl oyee : Servi cedConponent ({

When aclient instantiates a serviced component that is marked for J T activation, COM+ activates the actua object
and returns a proxy to the client. Subsequently, the client makes method calls on the proxy as usua. When the object
has finished doing its work, COM+ deactivates the object. However, the client continues to hold the reference to the
object viaits proxy (unaware that the underlying object has been deactivated). Later, when the client makes acall on
the proxy, COM+ activates a new instance of the object and associates it with the proxy thet the client is holding.

Now comes the million-dollar question: How does COM+ know that it is safe to deectivate the object?

COM+ could perhaps wait for a predefined timeout period to check if the client makes any cdll. If no call comesin
within thistimeout period, then COM+ can deectivate the object. However, such atimeout-based deactivation
mechanism may result in an unexpected behavior.

Consider, for example, our Enpl oy ee serviced component:

public class Enployee : ServicedConponent {
private String m enpl oyeeNane;

public String Name {

get {return menpl oyeeNane; }
set {m enpl oyeeNane = val ue; }

public long GetSalary() {

374

Theideaisthat the client firg sets the employee Nare property, and then cals Get Sal ar y to obtain the sdary of
the employee. Let's say the client doesn't cal Get Sal ar y within the timeout period. As aresult, COM+ deectivates
the object. Later, when aCGet Sal ar y cdl comesin, anew ingtance is activated. However, the new instance has no
ideawho the employeeisonwhich Get Sal ar y isbeing caled. In the best case, the call returns afailure condition.
Intheworst casg, it returns an invaid vaue.

Thered problem is that when the original object was being deectivated, it was in a Sate that contained the name of
the employee. When the object got deactivated, this sate got lost.

For JT to work, the object should be deactivated when it is "stateless,” meaning it either contains no data, or contains
data that is not important and may be discarded. But COM+ doesn't have the foggiest idea about the statel essness or
the statefulness of an object. Asfar asit is concerned, the object is nothing but an implementation of a bunch of
methods. Unlike COM+, however, the object does know what stateit isin. If it can inform COM+ thet it is done with
thework it is supposed to do, COM+ can go ahead and deactivate the object.

In our example casg, it is not okay to deactivate the object after setting the Nane property but it is fine to deectivate
the object after the client calsthe Get Sal ar y method.

An object that has J T enabled internaly contains a property caled the "done" bit or, more precisely, the
deectivate-ontreturn bit. COM+ checks this bit after returning from each method cdl. If the bit is turned on, COM+
deactivates the object.

To alow the serviced component to interact with COM+, Syst em Ent er pri seSer vi ces providesadtatic
class, Cont ext Ut i | . Thisclassimplements many properties that the serviced component can access or modify.

The property that we are interested in currently isDeact i vat eOnRet ur n. Let'srevise our Get Sal ar y method
to st this property to true. Thisis highlighted in the following code excerpt:

public long GetSalary() {
if (null == menpl oyeeNane) ({
t hrow new Exception("Set the enpl oyee nane first");

ContextUtil.DeactivateOnReturn = true;

/'l Return a hard-coded val ue for our deno
return 100000;

Setting Deact i vat eOnRet ur n totruewithin Get Sal ar y causesthe Enpl oyee object to be deactivated after
the method call completes. If you make a subsequent cdl to Get Sal ar vy, for example, anew ingtance of the

Servi cedhj ect iscreated astomatically. However, as the employee name has not been set on the new instance,
theimplementation Get Sal ar y smply throws an exception.

375

Although J T activation resultsin reclaiming the resource taken up by the object, it is often less than what you think.
Moreover, keep in mind that repested activation and deactivation of the object results in some performance
degradation. Before enabling J T activation, you should consider if the benefit of saving resources outweighs the
performance degradation. J T activation has more of an advantage when deectivating an object recovers a scarce,
expensive resource, such as a database connection.

Thered benefit of JT isthat it enforces transactiond correctness, as we will see later.

If IT activation is enabled on a component, it implies that its objects are created and destroyed frequently. The
primary intention of destroying an object isto force the object to rease its resources. If somehow we can force the
object to rlease its resources without actually destroying the object, we could reuse the object without having to
cregte it, thus saving some CPU cycles. Thisiswhat object pooling, a COM+ provided mechanism and our next topic
of discussion, triesto achieve. By pooling J T-activated objects, you can greatly speed up object reectivation for the
client.

Object Pooling

The concept of object pooling issimple. If an object is marked as pooled, and if the object is not currently being used
by any client, then COM+ can reuse this object when a client requests a new object of the same type. This savesthe
cost of object crestion.

Configuration and Working

A serviced component is marked as pooled using a serviced atribute, Cbj ect Pool i ngAt t ri but e. Whenthe
COM+ application containing the component is first activated, COM+ creates a bunch of objects (the exact number is
specified as the minimum pool sze) and holds them in a pool. When aclient creates an object of the serviced
component, COM+ first checks the poal to seeif the object of the specified typeis available. If so, COM+ activates
the object from the pool ingtead of creating anew one. If the object is not available, COM+ creates a new one, up to
the maximum specified size of the pool. When the object is released, either because the client cdled Di spose onit
or asaresult of aJ T deactivate-on-return bit set, the object goes back to the pool for reuse.

If dl the objects up to the maximum specified limit are aready in use when anew object cregtion request comesin,
COM+ waits for a specified timeout interva (configurable from Cbj ect Pool i ngAt t ri but e) to seeif any of

the used objects become available for reuse. If not, the object creation fails.

Note that earlier in the chapter, we deliberately chose the words object activation and deactivation, as opposed to
object cregtion and destruction. The semantic difference between the two should now become clear. When an object is
activated, it either gets created or fetched from apool of existing objects. When an object is deactivated, it either gets
destroyed or placed back in the pool.

The Obj ect Pool i ng attribute lets you specify all possible settings for your serviced component's object pool. The
following code excerpt, for example, enables object pooling for Enpl oy ee component with aminimum pool size of
2, amaximum pool size of 5, and a creation timeout of 50 milliseconds:

376

/1 Project ObjectPooling/Enployee

[Qoj ect Pool i ng(M nPool Si ze=2, MaxPool Si ze=5, Cr eat i onTi meout =50)]
public class Enployee : ServicedConponent {

There are times when a pooled object needs some information from COM+ during runtime. For example, a pooled
object may need to know when it is getting deactivated so that it can release its resources. To address this, the base
classSer vi cedConponent providesfour virtua methods:

public abstract class Servi cedConponent

{
protected internal virtual void Activate();
protected internal virtual void Deactivate();
protected internal virtual bool CanBePool ed();
protected internal virtual void Construct(String s);
}

Itisworth noting the Ser vi cedConponent class dready provides a default implementation for al four methods.
Y ou can smply override the method that you are interested in.

When a serviced component object is being activated, COM+ callsits Act i vat e method before handing the object
over to the client. This gives the object a chance to do any necessary initidization.

When the object is being deactivated, COM+ cdlsthe Deact i vat e method. Thisis the object's chance to perform
whatever cleanup is necessary, such as releasing any held resources, before it is destroyed or recycled.

Immediately &fter cdling Deact i vat e, COM+ callsthe CanBePool ed method on the object to check if the
object iswilling to be pooled for reuse. If the object returnsf al se, COM+ destroys the object. Otherwise, COM+
places (or may place) the object back into the pool.

Notethat returning t r ue from CanBePool ed does not guarantee that the object will be recycled; it only gives
COM+ the permission to recycleit. Returning f al se, however, guarantees that the object will be destroyed.

Findly, it is possible to pass any extrainformation as a string to the object at the time of condruction. An example
where thisis useful isto specify a database connection string for an object that needs to connect to a database. COM+
cdlsthemethod Const r uct jus after the congtructor is caled, passing in the construction string.

Y ou can enable construction string support from the Component Services snap-in. This option can be found on the
Activetion property page of the component properties dialog box. Y ou can aso specify the congtruction string on the
same page. A snapshot of the Activation property pageis shown in Figure 10.4.

377

Figure 10.4. Activation properties configuration.

MyCompany.Employee Properties

| General| Transactions | Secuily | Activation | Concunency | Advanced |

¥ Enabls obiect pooling

| Minimum Pool Size: EE
| |
Masinum Pool Size: 15 |
[
Ereation Timeout [ms): E1 ooo il

-[¥ Enable obiect construction — — |
Constuctor Sting |Hello Newward! |

[~ Activatior Conbest
N Don't force aclivalion contesd

[T Component supports eyents and statistics

W Enable Just In Time Activation _
| € Must be activaled in the callers context. W
| 7 Must be activated in the defaull context | |

[T Maik component private lo application .

[Ok _I[;am:ei][Spply]

The congtruction string support can aso be enabled on a serviced component by marking it with an attribute,
Constructi onEnabl edAt tri but e. Inaddition, you can specify a default construction string using this

atribute, asillugtrated in the following code excerpt:

[Constructi onEnabl ed(Enabl ed = true,
Default = "Hello Ad Wrld!'")]
public class Enployee : ServicedConponent {

Role-Based Security

In Chapter 9, we looked at the role-based security mechaniam offered by .NET. A smilar role-based security service
is offered by COM+. There are afew noteworthy differences.

1. Therole-based security mechanism under COM+ works only for Windows principals. .NET offers amore
generdized role-based security mechanism; the roles can be based either on Windows principas
(W ndowsPri nci pal) or on generic principds (Gener i cPri nci pal).

378

2. Under .NET, theroles defined by W ndowsPr i nci pal aretied to thelocal Windows user groups. Under
COM+, however, the roles can be arbitrarily defined. Each role can be assigned zero or more individua
USEr'S Or USer groups.

Let's extend our employee sdary program to ded with role-based security. We define an interface | Sal ar y to
obtain or to update an employeeg's salary. Theinterface is shown here:

/1 Project Rol eBasedSecurity/Enpl oyee

public interface |ISalary {
| ong GetSal ary();
voi d Set Sal ary(l ong newSal ary);

The roles that the serviced componert will use can be defined declaratively a the assembly level using the atribute
SecurityRol eAttri but e. For our example, we definetwo roles, Manager and Enpl oyee, asillugtrated in

the following code excerpt:

[assenbly: SecurityRol e("Manager"”, Description="The big w gs")]
[assenbl y: SecurityRol e("Enpl oyee")]

When the assembly isingtdled in the COM+ catalog, the pecified roles are created at the COM+ gpplication level.
Optiondly, the roles can be provided a descriptive text.

By default, the roles that are created a ingtallation time do not have any users associated with them. However, the
system administrator (or any privileged user) can then add or remove Windows users (or user groups) for eech role
using the Component Services snap-in.

It is possible to declaratively add the local user group Ever yone to arole. Thisisdone by setting a property,
Set Ever yoneAccess, ontheclassSecuri t yRol eAt t ri but e totrue, asillugrated in the following
revised definition of the Enpl oyee roe

[assenbl y: SecurityRol e("Enpl oyee", SetEveryoneAccess=true)]

This statement resultsin the Ever yone loca group being added to the Enpl oy ee role when this assembly is
installed in the COM+ catalog. However, opening an gpplication to everyone may not always be a good idea (athough
it is convenient for debugging purposes). Evauate your case to seeif you need this feature for any of the roles your
gpplication defines.

Declarative Access Check

Thefirg step in performing any access check isto configure your gpplication to enforce access checks. This can be
done using an assambly-leve attribute, Appl i cat i onAccessCont r ol Att ri but e, inyour code The default
congtructor for this attribute causes the access checks to be enforced. However, you can aso use an overloaded
constructor to explicitly turn on the access check. Consequently, the following two statements behave identically:

379

[assenbl y: ApplicationAccessControl]
[assenbl y: Applicati onAccessControl (true)]

Access checks can be performed either at the processlevel or afiner level that includes components, interfaces, and
interface methods. This behavior is controlled by a property, AccessChecksLevel , that

Appl i cati onAccessControl Attri but e defines The options that can be set on this property are defined
as an enumeration of type AccessCheckLevel Qpt i on. The possible optionsare Appl i cat i on (for a
process-level check) and Appl i cat i onConponent (for afiner level check).

The process-level access check makes sense only if the COM+ application is configured to run asa server (ina

separate processdl | host . exe). The following code excerpt shows how to enforce the process-level access check:

[assenbl y: ApplicationActivation(ActivationOption. Server)]
[assenbl y: ApplicationAccessControl (AccessCheckslLevel =
AccessChecksLevel Option. Application)]

When an application is configured for a process-level access check, only those users present in the
gpplication specific security roles can access the gpplication. Recdl that users can be added or removed from arole
using the Component Services snap-in.

A process-level access check isagood first-level protection againgt unknown users. However, most gpplications
desire afiner level of control on the component or interface method an individua user can access. Thisis where
AccessChecksLevel Opti on. Appl i cati onConponent isusful:

[assenbl y: ApplicationActivation(ActivationOption. Server)]
[assenbl y: ApplicationAccessControl (AccessCheckslLevel =
AccessChecksLevel Opti on. Appl i cati onConponent)]

Applying the Appl i cat i onConponent option for aserver application enables the access check a the process
level aswell asthefiner levels.

Note that the Appl 1 cat i onConponent option can be applied to alibrary gpplication as well. However, in this

case there will not be any process-level access check; security checks occur only a the finer levels,

After applying the Appl i cat i onConponent option, the next step isto identify each serviced component within
the gpplication on which the finer level access checks will be performed. Thisis done using an atribute
Conponent AccessControl Attri but e, asshowninthefollowing code excerpt:

/1 Project Rol eBasedSecurity/Enpl oyee

[Component AccessControl]
public class Enployee : ServicedConponent, |Salary {

380

The default constructor for Conponent AccessCont rol At t ri but e turns on the access check for the serviced
component. However, you can aso turn the access on explicitly by using an overloaded constructor that takes a
Boolean parameter. Consequently, the following two statements behave identically:

[Component AccessControl |
[Conponent AccessControl (true)]

Note that applying Conponent AccessCont r ol At tri but e isamust for each serviced component on which
you intend to perform the finer level access checks. Without this attribute turned on, you will run into unpredicteble
behavior.

Now we are ready to declaratively define the security roles that can access the serviced component, any of the
interfaces it supports, or the methods on the interface. Thisis done using our familiar

SecurityRol eAttri but e dass Thefollowing code excerpt shows how the Enpl oy ee-serviced component
can be st to be accessed only by users belonging to either the Manager or the Enpl oyee roles:

[SecurityRol e(" Manager")]

[SecurityRol e("Enpl oyee")]

[Component AccessControl]

public class Enployee : ServicedConponent, |Salary {

The security roles can be associated further at the interface or the interface method level. For example, it makes sense
that only managers be sat to change employee sdaries. The following code excerpt shows how this can be done
declaretively:

[SecurityRol e(" Manager")]
public void SetSalary(long newsal ary) {

m Sal ary = newSal ary;

Note that if you assign the role a the component, interface, or method level but not at the assembly levd, theroleis
automaticaly added to the gpplication during the assembly registration. However, it isa good practice to define dl the

possible roles at the assembly leve.

Programmatic Access Check

A declarative access check is agreat way to provide role-based security. However, declarative programming hesits
own limitations. For example, it cannot prevent any employee from accessing any other employeg's sdary
information.

381

To provide programmatic access checks, the NET/COM+ plumbing providesaclass, Secur i t yCal | Cont ext .
This class encapsul ates security information about dl the calersin the cal chain. Table 10.3 lists some important
properties and methods available on this class.

Table 10.3. SecurityCallContext Members

Member Description

NuntCal | er s Number of callers in the call chain.

Callers Collection of callers. Each caller is represented by aSecuri t yl dent ity object.
DirectCaller A Securityl dentity object representing the direct caller of the method.

Oiginal Caller A Securityl dentity object representing the original caller of the method.

| sSecur i t yEnabl ed|Checks if the security check is enabled in the current context.

I sCal l erl nRol e Checks if the direct caller is in the specified role.

I sUser | nRol e Checks if the specified user is in the specified role.

The current security cal context can be obtained by using a static property,

SecurityCal | Cont ext. Current Cal | . Using this context, you can check, for example, whether or not the
direct cdler isin aspecific role. You can dso perform additiona checks using the direct caller's account name. The
following code excerpt checks the cdler to ensure that only managers and the employee himself or hersalf can obtain
the dary informetion:

/1l Project Rol eBasedSecurity/Enpl oyee
public long GetSalary() {

SecurityCal | Context ctx = SecurityCall Context.CurrentCall;
if (!ctx.lIsSecurityEnabled) {
t hr ow new Excepti on(
" Conponent not configured correctly");

if (ctx.lsCallerlnRole("Minager")) {
/'l managers al ways have access
return m Sal ary;

String caller = ctx.DirectCaller.Account Nane;
/| Case-insensitive conparison
if (0 == String. Conpare(caller, menployeeNane)) {

/1 only an enpl oyee can | ook up his/her salary
t hrow new Exception("You are not authorized");

382

return m Sal ary;

It isimportant to understand that for the programmeatic access to work on a serviced component, you still need to set
Appl i cati onAccessControl toAppl i cati onConponent aswel asConponent AccessCont r

to true for the component. Without these settings, the security cal context may return incorrect results. To ensure that
these settings are property enabled, you can check the property | sSecur i t yEnabl ed on the security call context,

as shown in the preceding code.

Queued Components

In Chapter 8, we learned that .NET provides a mechanism to invoke method calls on an object asynchronoudy. Using
the Begi nl nvoke cal on the delegate of amethod, a client can invoke the method asynchronoudly, either on the

same machine or on aremote machine.

Although the support provided by .NET in its current release is agood first step toward asynchronous programming, it
il lacks afew useful fegtures. For instance, there is no support for disconnected work; the client and the server have
to be running at the same time. Thereis no built-in mechanism for auto-retry in case the server isdown at the time the
dient ismaking acdl. Thisgep isfilled by the support provided by COM+ for queued components.

A queued component looks and fedls like any other NET component that you develop. When a client ingtantiates a
queued component, the infrastructure returns a proxy object to the client. The real object isnot yet crested. The client
makes method calls on a queued object much like any other .NET object, except that the proxy simply records the
method calls (and its parameter values). When the client releases the object, the infrastructure stores the sequence of
method calls as amessage and sendsit to an MSMQ queue that is associated with the COM+ gpplication. The COM+
application is configured to listen on this queue. The infrastructure reads the message that arrives on the queue, creetes
an ingance of the queued component (the real object), and plays back the method calls on the redl object in the same
sequence asthe origina cdller.

If the COM+ gpplication queueis not reachable at the time the proxy sends the message, then the messageis sored in
aloca outgoing queue. The MSMQ infrastructure automaticaly forwards the message whenever the COM +
application queue becomes available.

Note that to use queued components, MSMQ has to be ingtaled on both the client machine and the server machine.

Configuring a Queued Component

We will extend our Employee Information System COM+ gpplication to avail COM+ queuing services. Thisisa

three-step process.

The first step isto configure the COM+ application as a server gpplication. Only server gpplications can avail COM+

queuing srvices.

[assenbl y: ApplicationActivation(ActivationOption. Server)]

ol

383

The second step is to enable the gpplication for queuing. Thisis done by means of an assembly-levd attribute,
Appl i cati onQueui ngAt tri but e, asshown in the following code excerpt:

[assenbl y: Applicati onQueui ng(Enabl ed=t r ue,
Queueli st ener Enabl ed = true)]

Setting the property Enabl ed to true resultsin the creetion of seven message queues on the local machine a the
time of regigtering the gpplication. Figure 10.5 shows a sngpshot of the message queues created for our Employee
Information System application. Note that this machine is set up in workgroup mode, so dl the queues are created as
private. If your mechineis set up in the domain mode, you see one public queue and six private queues.

Figure 10.5. Message queues for queued components.

O Computer Management

2] Fle Action Yiew Window Help —= x|
=+ AE DB @
-/ (&1 Services and Applications A [Nama =
4 Services Femploy=e information system
WMI Control) %umplwcc inFormakion system 0
i [irckaxiog Service: P employee information system_1
+ %lntmnet Information Services B enployse information system_2

= ":# Message Qu . yemplwee information system_3

Merployee information system_4

-
i . !
(7] System Queves Eemp.:{y?e lfon‘nahm system_deadqueve
+ E Mesage Quauing Triggers w g 3
- — — S|

The queues that are created are caled transactional type queues. This essentidly ensures that the messages sent to the
queue are never lost or duplicated.

Also note that uninstalling the COM+ application does not automaticaly remove the message queues. Y ou will need
to remove them explicitly.

Enabling the application for queuing Smply alows request messages to be sent to the application queue. However,

you aso need to set the gpplication to begin processing these queued requests. Thisis done by setting the

Appl i cati onQueui ngAttri but e propety Queueli st ener Enabl ed to true, as shown in the preceding
code. When the application is started, the infrastructure creates a listener thread for the application that processes the
queued requests.

Thefind gep in configuring the queued component is to encgpsulate dl the methods thet the dient will useinan
interface, and enable the interface for queuing support. The latter part is done by marking the interface with an
atribute | nt er f aceQueui ngAtt ri but e. Thefollowing code excerpt enables queling on an interface
| Set Sal ary. Thedient is expected to use thisinterface.

/'l Project QueuedConponent/Enpl oyee

384

[l nterfaceQueui ng(Enabl ed = true)]
public interface | SetSalary {
String Nanme {set; }
voi d Set Sal ary(l ong newSal ary);

Note that the methods of a queuing interface cannot have out or r ef type parameters, nor can they have areturn
vaue. Asthe methods will be invoked asynchronoudy, the return type parameters do not make any sense. Recdl from
Chapter 8 that smilar redtrictions were placed on methods based on the .NET asynchronous programming mode!.

The serviced component requires no further configuration, except, of course, to support the queuing interface. Thisis
highlighted in the following code excerpt:

/1 Project QueuedConponent/Enpl oyee
public class Enployee : ServicedConponent, |SetSalary {

public String Name {
get {return m enpl oyeeNane; }
set {
m_enpl oyeeNane = val ue;
m Sal ar y=100000; //hardcoded value is ok for our test

public void SetSal ary(l ong newSal ary) {
if (null == menpl oyeeNane) {
t hr ow new Exception("Set the enpl oyee nane first");

}

m Sal ary = newSal ary;

Managed Clients

For a queued component's client, the identification of the queued component is represented as atextual string of the
form:

"queue: Conput er Name=Machi neNane/ new. Pr ogl d"
For example, our Enpl oy ee sarviced component running on amachine MYDEV can be represented as:

"queue: Conput er Nane=MYDEV/ new. MyConpany. Enpl oyee”

385

If the queued component is running on the local machine, the Conput er Nane field can be omitted and the
component can Ssimply be represented as.

"queue: / new. M\yConpany. Enpl oyee”

The mechanism of resolving arbitrary object names, such as the preceding one, onto the object to which they refer isa
gtandard part of COM. This mechanism is based on using locator objects (formally caled monikers) to properly bind
to the desired object.

The COM interoperability layer under .NET provides agtatic method, Mar shal . Bi ndToMoni ker (thedass
Mar shal can be found under the namespace Syst em Runt i me. | nt er opSer vi ces) to bind to an object
specified by its moniker name. The following code excerpt shows how aclient for our Enpl oy ee component can
obtainan | Set Sal ar y intefaceusing Mar shal . Bi ndToMoni ker :

/1 Project QueuedConponents/Myd i ent

static void Main(string[] args) {
String s = "queue:/ new. MyConpany. Enpl oyee";
| Set Sal ary sal = (I Set Sal ary) Marshal . Bi ndToMoni ker (s);
sal . Nane = "Jay";
sal . Set Sal ary(110000) ;

Note that clients can aso ingtantiate the serviced component directly (and not use Var shal . Bi ndToMoni ker).
In this case, however, COM+ does not provide queuing services for the component. Any method cdl that the client
meakes on the object isinvoked synchronoudy. Y ou could use this to your advantage for testing the functiondity of
your component. Essentidly, it is up to each client to decide if it wishesto use the serviced component synchronoudy

or as a queued component.

Recall that the client has to release the proxy object for the queued component so that the recorded sequence of
method calls can be dispatched to the queued component's queue. For a.NET client, this would happen when the
proxy object is garbage collected. However, the NET client can expedite releasing the proxy object by caling a gatic
method, Mar shal . Rel easeConhj ect . Thisishighlighted in the following code excerpt:
/'l Project QueuedConponents/ Myd i ent
static void Main(string[] args) {

| Set Sal ary sal = (ISet Sal ary) Marshal . Bi ndToMoni ker (s) ;

/'l use the object

/'l Dispose the object after done with using it
Mar shal . Rel easeConbj ect (sal) ;

386

Consol e. WiteLine("Done...");

This concludes our discussion on queued components. There are many other possibilities with queued components.

For example, you can aso set the client to get a response back from the queued component. An easy way to do thisis
for the dient to create a message queue and pass the identity of the message queue as a method parameter to the
queued component. Interested readers may wish to check [Tap-01] to learn more about MSMQ and to explore various
possihilities with queued components.

Transactions

In an enterprise system, maintaining the integrity of data across various applications and machinesis critica.
Regardless of the scope of the gpplication, at least some aspects of transaction processing have to be implemented to
guarantee the integrity of the data. However, developing code to handle dataintegrity can be very chalenging. COM+
provides a service cdled automatic transaction processing that smplifies this development effort. In this section, we
look at how to develop .NET serviced components that use COM+ transaction services.

A Simple Banking System

We need an example to explore the transaction support under COM+. In our example, a customer, Jay, has an account
at two banks—Fidelity and Schwab. Jay wants to transfer some money from his account a Fiddlity to his account at
Schwab.

The Databases

Each bank stores customer balancesin a database table Account s. The table contains two columns, Pi n to store
the unique account number of the customer and Bal ance to store the current balance.

We will use Microsoft Desktop Engine (M SDE) as our database server. It isa Microsoft SQL Server-competible
database engine that shipswith .NET Framework SDK (as well as some other products).

MSDE comes with a command-line program, 0sql . exe. We usethistool to create two databases, Fi del i t yDB
and SchwabDB. TheFi del i t yDB database stores Jay's balance under the account number FI D- 3456 and the
Schwab DB stores the balance under the account number SCH- 4567. Theinitid baance in both accountsis
$100,000.

To smplify the creation of the databases, | have created an SQL batch file that contains the following SQL
commands.

-- File Transacti ons/ DBCreati on/ Creat eAccounts. cnd
create database FidelityDB

go

use FidelityDB

create table Accounts ([Pin] varchar (15) NOT NULL,

387

[Bal ance] int NOT NULL)

create unique index Pin on Accounts([Pin])

insert into Accounts Values ('FID 3456', '100000")

go

create database SchwabDB

go

use SchwabDB

create table Accounts ([Pin] varchar (15) NOT NULL,
[Bal ance] int NOT NULL)

create unique index Pin on Accounts([Pin])

insert into Accounts Val ues (' SCH 4567', '100000")

go

qui t

Y ou can submit this batch file as input to OSQL as follows:

osql -S .\NetSDK -E -i CreateAccounts. sql

Here, . \ Net SDK identifies the ingtance of MSDE on the loca machine and switch - E informs OSQL to use
Windows authentication to connect to the MSDE, eliminating the need for a separate user name and password.

The Coding Logic

Our banking system example consists of three serviced components:

Component Fi del i t yBank represents the banking activity at Fiddlity.
Component SchwabBank represents the banking activity at Schwab.

Component Tr ansf er Fund isautility component that provides a utility method,
FronFi del i t yToSchwab, to transfer funds from a Fidelity account to a Schwab account.

Hereis the relevant code excerpt for each of these components:

/1l Project Transactions/Banks

public class FidelityBank : ServicedConponent, |Di sposable {

private M/Account sDB m db;

public void Wthdrawbney(String pin, int anount) {

i nt bal ance = m db. Get Bal ance(pi n);
m db. Updat eBal ance(pi n, bal ance - anount);

public class SchwabBank : Servi cedConponent, |D sposable {

388

private MyAccount sDB m db;

public void AddMoney(String pin, int anount) {
i nt bal ance = m db. Get Bal ance(pi n);
m_db. Updat eBal ance(pi n, bal ance+anount) ;

public class TransferFunds : Servi cedConponent {

public void FronFidelityToSchwab(String fidelityPin,
int amount, String schwabPin) {
usi ng(FidelityBank fB = new FidelityBank()) {
usi ng (SchwabBank sB = new SchwabBank()) {
f B. Wt hdrawvoney(fi delityPin, anmount);
sB. AddMboney(schwabPi n, anount) ;

Class My Account sDB that isbeing used in this code isolates the use of the database and provides useful methods
such as Get Bal ance (to obtain the balance for an account) and Updat eBal ance (to update the balance for an
account). It uses ADO.NET to access the database. Here is the code for the classin its entirety. Here | am giving you
an opportunity to learn the basics of ADO.NET in two minutes or less:

public class M/AccountsDB : |Di sposable {
private Sqgl Connecti on m Conn;
public MyAccount sDB(String dbNane) {
String s = String. Fornat (
"server=(local)\\ Net SDK; Tr ust ed_Connect i on=yes; dat abase={0}",
dbNane) ;
m _Conn = new Sqgl Connecti on(s);
m_Conn. Open();

public int CGetBal ance(String pin) {
String s = String. Fornat (
" SELECT Bal ance FROM Accounts WHERE [Pin] = "{0}" ",
pin);
usi ng (Sql Command cnd = new Sql Command(s, m Conn)) {
usi ng (Sqgl Dat aReader reader = cnd. Execut eReader ()) {

if (!reader.Read()) {

389

s = String. Format ("Unknown pin: '{0}'", pin);
t hr ow new Exception(s);

}

int balance = (int) reader["Bal ance"];

return bal ance;

public void UpdateBal ance(String pin, int balance) {
String s = String. Format (
"UPDATE Accounts SET Bal ance = {0} WHERE [Pin] = "'{1}"'",
bal ance, pin);
usi ng (Sgl Command cnd = new Sgl Command(s, m Conn)) {
i nt nunRecords = cnd. Execut eNonQuery();
if (0 == nunRecords) {
s = String. Format ("Unknown pin: '{0}'", pin);
t hr ow new Exception(s);

}
}
}
/1
/] Standard Di spose pattern
/1

~MyAccount sDB() {
Di spose(fal se);

public void dose() {
Di spose();

public void D spose() {
Di spose(true);
GC. SuppressFinal i ze(this);

/1 Al ways di spose unnanaged resour ces
/' Disposing==true => di spose managed resource as well
protected virtual void D spose(bool disposing) {
i f (disposing) {
/'] di spose managed resources

390

if (null '= mGConn) {
/1 Must al ways cl ose the connection
m _Conn. d ose();
m Conn = nul | ;

It istime for usto configure the serviced components to participate in a transaction. However, let'sfirst examine the
requirements for a transaction.

Theory of Transaction
For our banking example, atransfer transaction consigts of two operations.

1. Reducethebaancefor the accountinthe Fi del i t y DB database.
2. Add to the balance for the account in the Schwab DB database.

A transaction must be such thet it entirely succeeds or entirely fails. Thisimpliesthat al of the operationsinvolved in
the transaction must be updated successfully or nothing should be updated at dl. This dl-or-nothing proposition of a
transaction is caled atomicity.

A transaction must be consstent. Any individua operation within a transaction may leave the datain such a state that
it violates the system'sintegrity. In our case, after the completion of the first operation, some money has been taken
out of the system. After the completion of the second operation, either the system should rollback to the origind state
(restore the money that was taken out), or, on success, go to anew state that still maintains the overal integrity of the
sysem.

The system should isolate any uncommitted changes. A second transaction that happens concurrently should only be
able to see the dataiin the dtate before the firgt transaction begins or in the Sate after the firgt transaction completes,
but nat in some haf-done mode between the two states.

Finaly, atransaction must be durable; that is, when atransaction is committed, the data sources involved must
guarantee that the updates will persst, even if the computer crashes (or the power goes off) immediately after the
commit. This requires specialized transaction logging that would allow the data source's restart procedure to complete
any unfinished operations.

Atomicity, condgstency, isolation, and durability: A transaction should support these properties. Thisisthe ACID test
for transactions.

Configuring the Serviced Components
Using the COM+ transaction support under .NET is a two-step process.

1. Each serviced component that intends to participate in a transaction needs to indicate its interest.

391

2. Each sarviced component method that participates in a transaction should vote for either committing or
aborting the transaction. There are three ways to vote in a transaction, and we will look at each of them next.

Enabling Transaction Support

A serviced component indicates its interest in participating in a transaction by means of an attribute,
Transacti onAttri bute. A consructor for this attribute takes a parameter of enumeration type
Transact i onQpt i on. Hereiswhat each of the options means:

Transact i onQpti on. Requi r ed: Thisvaueimpliesthat a component must have atransaction to do
itswork. If the component's object is activated within the context of an existing transaction, the transaction is
propagated to the new object. If the activator's context has no transactiona information, then COM+ creates
abrand new context containing transactiond information and attachesiit to the object.

Transact i onQpti on. Requi r esNew: Sometimes an object might wish to initiate a new transaction,
regardless of the transactiona dtatus of its activator. When aRequi r esNewvaueis specified, COM+
initiates a new transaction that is digtinct from the activator's transaction. The outcome of the new

transaction has no affect on the outcome of the activator's transaction.

Transacti onQpti on. Suppor t ed: A component with this value indicates thet it does not care for
the presence or absence of atransaction. If the activator is participating in a transaction, the object
propagates the transaction to any new object that it activates. The object itself may or may not participatein
the transaction. This valueis generally used when the component doesn't redlly need a transaction of its own
but wants to be able to work with other components.

Transacti onOpti on. Not Suppor t ed: The component has no interest in participating in a
transaction, regardless of the transactiond status of its activator. This guarantees that the component's object
neither votesin its activator's transaction nor begins atransaction of its own; nor doesit propagete the

caller's transaction to any object that it activates. This vaue should be chosen if you wish to bresk the
continuity of an exigting transaction.

Transacti onOpti on. D sabl ed: If acomponent will never access aresource, setting the transaction
attribute to disabled diminates any transaction-related overhead for the component. This attribute smulates
the transaction behavior of a nonconfigured component.

Each of the three serviced componentsin our example usesthe Requi r ed transaction option, asillustrated in the
following code excerpt:

[Transaction(Transacti onQpti on. Requi red)]
public class FidelityBank : ServicedConponent, |Di sposable {

COM+ automatically begins a transaction when it encounters either of the following conditions:

1. When anontransactiona client activates an object with acomponent that has a transaction option st to
either Requi r ed or Requi r esNew.

2. When atransactiond client calls an object with a component that has a transaction option set to
Requi r esNew.

392

The object responsible for beginning a new transaction is referred to as the root object of that transaction. Aswe will
see shortly, this root object has a gpecid role in completing the transaction.

An object that subsequently gets activated within the boundary of this transaction, and is marked as either
Requi r ed or Suppor t ed, shares the transaction.

If an object is participating in a transaction, it can obtain its transaction 1D from its context, as highlighted in the
following code fragment:

[Transacti on(Transacti onOpti on. Requi red)]
public class FidelityBank : ServicedConponent, |Di sposable {

public void Wthdrawwoney(String pin, int anount) {
Consol e. WitelLine("Transaction ID: {0}",
ContextUtil . Transactionld);

A transaction completes when the root object of the transaction is deectivated. At this point, COM+ checksif dl the
objects have individudly given their consent to commit the transaction. If al the participants have committed, COM+
goes ahead and commits the transaction, in which case the databases are updated with the new values. If any
participant disapproved of the transaction, the transaction is aborted and the databases are rolled back to their origina
state.

A transaction is completed only after the root object of the transaction is deactivated. Forcing the clients to release the
root object and recreate it for each transaction not only requires some programming effort on the part of the client, but
isaso inefficient. Marking the root object transactiond component as J T-activated and setting the
deectivate-ontreturn bit within an gppropriate method implementation deactivates the root object. Not only does this
enforce transaction completion, but it also leaves the setup (the proxy, the COM communication channel, etc.) intact.
Infact, JT activation is S0 crucia for transactiona correctness that, if a component is marked to participate in a
transaction, COM+ ensures that the component is also automatically enabled for JT activation.

Voting Using My Tr ansact i onVot e

A serviced component can use astatic property My Tr ansact i onVot e, to vote on the transaction's outcome. This
property is of enumeration type Tr ansact i onVot e with two possible options—Conmi t and Abor t .

The following code excerpt demonstratestheuse of My Tr ansact i onVot e:

/1 d ass SchwabBank
public void AddMoney(String pin, int amount) ({

try {
i nt bal ance = m db. Get Bal ance(pi n);

m_db. Updat eBal ance(pi n, bal ance+anount);

393

ContextUtil.MTransacti onVot e
Transacti onVote. Commi t;
}cat ch(Exception e) {
ContextUtil.MTransacti onVot e
Transacti onVot e. Abort ;
throwe; // propagate the error

Hinally {
Context Uil .DeactivateOnReturn = true;

Note that, irrespective of the outcome of the transaction, the deactivate-on-return bit must ways be set to true.

It is aso possible to avoid the exception-handling code with alittle programming trick. Start with setting the
deectivate-ontreturn bit to true and the transaction vote to abort. All that is needed when returning from the method is
to set the transaction vote to commit. Using thislogic, the preceding implementation of AddMet hod can be
rewritten asfollows:

public void AddvbneyEx(String pin, int amunt) {

Context Util.DeactivateOnReturn = true;
ContextUtil.MTransacti onVote =

Transacti onVot e. Abort ;
i nt bal ance = m db. Get Bal ance(pi n);
m db. Updat eBal ance(pi n, bal ance+anount) ;
ContextUtil.MTransacti onVote =

Transacti onVot e. Commi t;

Voting Using Set Conpl et e

It is possible to combine the two operations, voting for the transaction and setting the deactivate-on-return bit to true,
into one. Thisis done by means of two static methods that are available on the dass Cont ext Ut i | —

Set Conpl et e (to commit the transaction) and Set Abor t (to abort the transaction). The following code excerpt
illustrates the use of these methods:

/1 dass FidelityBank
public void Wthdrawwoney(String pin, int anount) {
try {
i nt bal ance = m db. Get Bal ance(pi n);
i f (balance < anmount) ({
String s = String. Format (
"Cient '{0}' does not have enough bal ance", pi n);
t hr ow new Exception(s);

}

m db. Updat eBal ance(pi n, bal ance - anount);

394

ContextUtil . Set Conpl ete();
}cat ch(Exception e) {
ContextUtil . Set Abort ();
throwe; // propagate the error

Note that there is no need to explicitly set the deactivate-on-return bit. Theimplementation of Set Conpl et e as
well asSet Abort satthishittot r ue intemdly.

It isd o possible to rearrange this code to avoid the exception-handling logic. Thetrick isto start with caling
Set Abor t firgt, asshown here:

public void WthdrawMoneyEx(String pin, int anmount) ({
ContextUtil.SetAbort(); // to start with
i nt bal ance = m db. Get Bal ance(pi n);
i f (balance < anount) {
String s = String. Format (
"Cient '{0}' does not have enough bal ance", pi n);
t hr ow new Exception(s);
}
m_db. Updat eBal ance(pi n, bal ance - anount);
ContextUtil . Set Conpl ete();

Declarative Voting

Finaly, perhaps the easest way to participate in a transaction is by marking a method with an attribute,
Aut oConpl et eAt t ri but e, and enabling it to true, asillustrated in the following code excerpt:

/1 C ass TransferFunds
[Aut oConpl et e(true)]
public void FrontidelityToSchwab(String fidelityPin,
int amount, String schwabPin) {
usi ng(FidelityBank fB = new FidelityBank()) {
usi ng (SchwabBank sB = new SchwabBank()) {
f B. Wt hdrawvoney(fi delityPin, anmount);
sB. AddMoney(schwabPi n, anount) ;

When amethod is marked with Aut oConpl et eAt t ri but e, COM+ automaticaly cals Set Conpl et e if the
method call returns normally. If the method call throws an exception, then COM+ automatically aborts the transaction,
asif Set Abort wascaled.

395

Finaly, hereisthe code excerpt for the client application that wishesto trandfer the money:

/'l Project Transactions/ Md i ent

public static void TransferFunds() {

try {
using (TransferFunds tf = new TransferFunds()) {
/1 tf.FronFidelityToSchwab("FI D 3456", 100, "SCH 4567");

tf.FronfidelityToSchwab("FI D-3456", 100, "SCH 4568");

}
Consol e. Wi telLine("Transfer success");

}catch(Exception e) {
Consol e. WiteLine("Transfer failed: {0}", e. Message);

Using the account number SCH-4568 instead of SCH-4567 causes the transaction to fail. Y ou can verify thisby
checking the tables in the databases.

At this point, you must have afairly good understanding of how a serviced component can participate in atransaction.
Thereis one thing that might have puzzled you. It makes senseto have Fi del i t yBank and SchwabBank astwo
different serviced components. However, why do we need a third serviced component, Tr ansf er Funds ? It seems

the logic of transferring funds could have been implemented in the client application itsdlf.

By usngthe Tr ansf er Funds object asthe root of the transaction, and ingtantiating the two bank componentsin
the context of the same transaction, we tie the operations from two banks together as a single transaction. Had the
client application implemented the logic of indantiating the bank objects and transferring the funds between them, it
would have resulted in two separate and independent transactions. The outcome of one transaction would not affect
the outcome of the other. Y ou can witness this behavior by temporarily removingthe Tr ansact i onAttri but e
on Tr ansf er Funds and dumping the transaction ID from each of the methods involved in the transaction.

Essentialy, the reason the client application had to rely on a serviced component was that the client itsdf could not
initiate the transaction.

Extending Transactions to Clients

It is possible to set a nonserviced component to participate in a transaction. The COM+ library defines a class,
Transact i onCont ext , that the client can use for this purpose. When this dassisinstantiated, it automatically
garts atransaction. Other objects can be instantiated in the same transaction context by means of a method,

Creat el nst ance,onthe Tr ansact i onCont ext object. The dient itsdf must vote on the transaction by
cdling either Conmmi t or Abort onthe Tr ansact i onCont ext object. The fallowing client-side code excerpt
demongtrates the use of this class:

/'l Project Transactions/ Md i ent

396

public static void Participatel nTransaction() {
/1 Get the transaction object
Transacti onCont ext tc = new Transacti onCont ext () ;
/'l Create fidelity bank object and invoke
/1 Wthdrawvbney nethod on it using Reflection
hj ect oF =tc. Oreatelnstance("Fidelity.Bank");
Type tF = oF. Get Type();
Met hodl nfo nF = tF. Get Met hod(" W t hdr awvbney") ;
n. | nvoke(oF, new Cbject[]{"FI D 3456", 100});

/] Create schwab bank object and i nvoke

/1 AddMoney net hod on it using Reflection

hj ect 0S =tc. Oeatel nstance(" Schwab. Bank");
Type tS = 0S. Get Type() ;

Met hodl nfo nB5 = t S. Get Met hod(" AddMoney") ;

nS. | nvoke(oS, new Cbj ect[] {"SCH 4568", 100});

/1 Everything is OK. Conmit
tc. Commit();
Consol e. WiteLine("Transfer success ...");

Note that the default behavior for the Tr ansact i onCont ext object isto abort the transaction. The client hasto
expliditly cal Conmi t to indicate its positive intentions. Obvioudly, dl the participating transactiona objects also
have to approve of the transaction for it to commit.

Also note thet this specific coderdieson Ref | ect i on to invoke the methods. Thisis because the proxy object that
isreturned by Cr eat el nst ance does not support the origind type. Casting the object to its origind type, as
shown in the following code, causes the runtime to throw an exception:

oj ect oF = tc.Createlnstance("Fidelity.Bank");
FidelityBank fB = (FidelityBank) oF;

The only other way to avoid using Reflection is to encapsulate the functionality of the serviced component in an
interface. The object returned by Cr eat el nst ance can then be cast to an gppropriate interface and methods can

be invoked from the interface.

Extending Transactions to Web Services

The .NET Framework makesit possible for a\Web service method to participate in a transaction. Recall from Chapter
6 that a Web service method needs to be marked with an attribute, Veb Vet hodAt t r i but e. An overloaded
condructor of this attribute takes a parameter of type Tr ansact i onOpt i on. Thefollowing code excerpt for a

Web service implements our logic of transferring funds from Fiddlity to Schwab:

/'l File Transacti ons/ Tr ansf er Funds. asnx

397

[WebSer vi ce(Nanmespace="http:/ /1 ocal host/ Transacti onDeno/ ")]
public class TransferFunds : WbService {

[WebMet hod(Tr ansacti onOpti on = Transacti onOpti on. Requi red)]
public void FronFidelityToSchwab(String fidelityPin,
int amount, String schwabPin) {
usi ng(FidelityBank fB = new Fi delityBank()) {
usi ng (SchwabBank sB = new SchwabBank()) {
f B. Wt hdrawvoney(fi delityPin, anmount);
sB. AddMbney(schwabPi n, anount);

Note that Web service methods need not explicitly vote on atransaction. If an exception occurs within a Web service
method, the transaction is automaticaly aborted (asif Set Abor t was cdled). If the method returns successfully
without throwing an exception, then the transaction is autometicaly committed (asif Set Conpl et e wascalled).
Of course, the Web sarvice can il use Cont ext Ut i | to explicitly vote on the transaction.

Also note that for this particular example to work, you also need to turn dlient impersonation on via\V\eb. Confi g
and configure 1S virtua directly for Windows authentication. Otherwise, the cdl to open the database connection

might fail.

Summary

Blank??

References

[Tap-01] Tapadiya, Pradeep, COM+ Programming A Practical Guide Using Visual C++ and ATL, ISBN
0-13-088674-2, Prentice Hall PTR, 2001.

[Ewa-01] Ewad, Tim, "COM+ Integration: How .NET Enterprise Services Can Help You Build Distributed
Applications,” MSDN Magazne, October 2001. msdn.microsoft.com/msdnmag/issues/01/10/complus/complus.asp

[And-02] Andera, Craig, and Ewadld, Tim, "COM+ 1.5: Discover Powerful Low-Level Programming in Windows XP
with New COM+ APIs," MSDN Magazine, April 2002.
msdn.mi crosoft.com/msdnmagy/issues/02/04/COM X P/COM X P.asp

398

[Mcc-02] McCarthy, Tim, "Using COM+ Servicesin .NET," MSDN Library, February 2002.
msdn.mi crosoft.comvlibrary/en-us/dndotnet/html/comservnet.asp

399

	.NET Programming - A Practical Guide Using C#
	Introduction

	Acknowledgments
	PART I
	Chapter 1. What Is .NET?
	Introduction
	The Vision
	The Platform
	The .NET Framework
	Development Tools
	Foundation Services
	What Does It All Mean?
	References

	Chapter 2. From C++ to C#
	A Simple "Hello User" Program
	C# for C++ Programmers
	Common Programming Paradigms
	Deployment
	Diagnostics and Support
	Summary
	References

	Chapter 3. Assemblies
	Assemblies
	Assembly Identification
	Anatomy of an Assembly
	Shared Assemblies
	Configuration Files
	Assembly Binding
	Attribute-Based Programming
	Advanced Topics
	Summary
	References

	Chapter 4. Essentials of the .NET Framework
	.NET Framework Overview
	Configuration
	Common Language Runtime
	Microsoft Intermediate Language
	Managed Code Execution
	Automatic Memory Management
	Hosting the Runtime
	Summary
	References

	Chapter 5. Programming with the Base Class Library
	Enumeration
	Collection
	Cloning
	Streams
	Serialization
	Strings
	Summary
	Reference

	PART II
	Chapter 6. Distributed Computing
	Application Domains
	Contexts
	Marshaling
	Remoting Architecture
	ASP.NET Web Services
	Remoting Internals
	Summary
	References

	Chapter 7. Interoperability
	Introduction
	Managed Code to Native DLLs
	Accessing COM Components from .NET
	Accessing .NET Components from COM
	Summary
	References

	Chapter 8. Concurrency
	Multithread Programming
	Multithreading Issues
	Asynchronous Programming
	Summary

	Chapter 9. Security
	Introduction
	Code Access Security
	Role-Based Security
	ASP.NET Web Services Security
	Summary
	References

	Chapter 10. Enterprise Services
	Enterprise Systems: .NET and COM+
	Developing .NET Serviced Components
	JIT Activation
	Object Pooling
	Role-Based Security
	Queued Components
	Transactions
	Summary
	References

